Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw Dec 2013

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles ...


Colloidal Nano-Apatite Particles With Active Luminescent And Magentic Properties For Biotechnology Applications, Rajendra Kasinath, Kumar Ganesan Jan 2013

Colloidal Nano-Apatite Particles With Active Luminescent And Magentic Properties For Biotechnology Applications, Rajendra Kasinath, Kumar Ganesan

Environmental Engineering

Colloidal Nano-apatite Particles with Active Luminescent and Magentic Properties for Biotechnology Applications. The synthesis of functional nano-materials is a burgeoning field that has produced remarkable and consistent breakthroughs over the last two decades. Individual particles have become smaller and shown potential for well defined functionality. However, there are still unresolved problems, a primary one being the loss of functionality and novelty due to uncontrolled aggregation driven by surface energy considerations. As such the first design criteria to harness the true potential of nanoparticles is to prevent unwanted agglomeration by: (1) improving, and, if possible, (2) controlling aggregation behavior. This requires ...