Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Dattatri K. Nagesha

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Latika Menon

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Experimental And Analytical Study Of Submicrometer Particle Removal From Deep Trenches, Kaveh Bakhtari, Rasim O. Guldiken, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Experimental And Analytical Study Of Submicrometer Particle Removal From Deep Trenches, Kaveh Bakhtari, Rasim O. Guldiken, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Particle removal from patterned wafers and trenches presents a tremendous challenge in semiconductor manufacturing. In this paper, the removal of 0.3 and 0.8 µm polystyrene latex (PSL) particles from high-aspect-ratio 500 µm deep trenches is investigated. An experimental, analytical, and computational study of the removal of submicrometer particles at different depths inside the trench is presented. Red fluorescent polystyrene latex (PSL) particles were used to verify particle removal. The particles are counted using scanning fluorescent microscopy. A single-wafer megasonic tank is used for the particle removal. The results show that once a particle is removed from the walls or the …


Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Theremoval of nanoparticles is becoming increasingly challenging as the minimumlinewidth continues to decrease in semiconductor manufacturing. In this paper,the removal of nanoparticles from flat substrates using acoustic streamingis investigated. Bare silicon wafers and masks with a 4 nmsilicon cap layer are cleaned. The silicon-cap films are usedin extreme ultraviolet masks to protect Mo–Si reflective multilayers. Theremoval of 63 nm polystyrene latex (PSL) particles from these substratesis conducted using single-wafer megasonic cleaning. The results show higherthan 99% removal of PSL nanoparticles. The results also showthat dilute SC1 provides faster removal of particles, which isalso verified by the analytical analysis. Particle removal …


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Ahmed A. Busnaina

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.