Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, Kai-Tak Wan

Kai-tak Wan

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.


Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan

Mehmet R. Dokmeci

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.


Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina Jun 2011

Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina

Ahmed A. Busnaina

In this study, the interfacial and electrokinetic phenomena of mixtures of isopropyl alcohol (IPA) and deionized (DI) water in relation to semiconductor wafer drying is investigated. The dielectric constant of an IPA solution linearly decreased from 78 to 18 with the addition of IPA to DI water. The viscosity of IPA solutions increased as the volume percentage of IPA in DI water increased. The zeta potentials of silica particles and silicon wafers were also measured in IPA solutions. The zeta potential approached neutral values as the volume ratio of IPA in DI water increased. A surface tension decrease from 72 …


A Parameter Study Of Separation Modes Of Adhering Microcontacts, Yan Du, George G. Adams, Nicol E. Mcgruer, Izhak Etsion May 2011

A Parameter Study Of Separation Modes Of Adhering Microcontacts, Yan Du, George G. Adams, Nicol E. Mcgruer, Izhak Etsion

George G. Adams

A finite element model was developed to study adhesion of elastic-plastic microcontacts in a previous investigation. An interesting result was the identification of two distinct separation modes, i.e. brittle and ductile separation. In the current study, that model is used to conduct a series of simulations to determine the influence of four nondimensional parameters (including the maximum load parameter) on the contact and on the separation modes. The results show that the parameter S (the ratio of the theoretical stress to the hardness) and δƒ/δc (representing the loading level) are the most important. Smaller S can only lead to brittle …


A Parameter Study Of Separation Modes Of Adhering Microcontacts, Yan Du, George G. Adams, Nicol E. Mcgruer, Izhak Etsion May 2011

A Parameter Study Of Separation Modes Of Adhering Microcontacts, Yan Du, George G. Adams, Nicol E. Mcgruer, Izhak Etsion

Nicol E. McGruer

A finite element model was developed to study adhesion of elastic-plastic microcontacts in a previous investigation. An interesting result was the identification of two distinct separation modes, i.e. brittle and ductile separation. In the current study, that model is used to conduct a series of simulations to determine the influence of four nondimensional parameters (including the maximum load parameter) on the contact and on the separation modes. The results show that the parameter S (the ratio of the theoretical stress to the hardness) and δƒ/δc (representing the loading level) are the most important. Smaller S can only lead to brittle …