Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Galvanic Porous Silicon: Processing And Characterization For Nanoenergetics, Collin R. Becker Jan 2010

Galvanic Porous Silicon: Processing And Characterization For Nanoenergetics, Collin R. Becker

Mechanical Engineering Graduate Theses & Dissertations

Porous silicon (PS) is a silicon (Si) based material composed of pores with diameters ranging from several nanometers to several micrometers. Typically PS is formed by electrochemically etching a Si wafer in a hydrofluoric acid (HF) based electrolyte. This route requires a custom built etch cell and a power supply and is difficult to integrate with the batch processing techniques of conventional Microsystems fabrication. In the first part of this work, a galvanic etching approach is used to fabricate PS in which neither a power supply nor custom etch cell are required. Galvanic etching methods are developed to fabricate thick ...


Atomic Layer Deposition Enabled Interconnect And Packaging Technologies For As-Grown Nanowire Devices, Jen-Hau Cheng Jan 2010

Atomic Layer Deposition Enabled Interconnect And Packaging Technologies For As-Grown Nanowire Devices, Jen-Hau Cheng

Mechanical Engineering Graduate Theses & Dissertations

Nanowires (NWs) have attracted considerable interests in many applications due to their small size, extremely high surface-to-volume ratio, and superior material properties. They are promising material candidates as fundamental building blocks for future electronic, optoelectronic, energy, sensor, and biomedical applications. The majority of research activities have focused on the synthesis of NWs. With the advent of high-performance NWs, interconnect and packaging of NWs are becoming increasingly important for device applications. Vertical NW array devices, compared with horizontal NW configurations, are of great importance for achieving ultra-high integration density at the device level without the need of additional assembly and rearrangement ...


Nanomaterial Characterization Using Actuated Microelectromechanical Testing Stages, Joseph James Brown Jan 2010

Nanomaterial Characterization Using Actuated Microelectromechanical Testing Stages, Joseph James Brown

Mechanical Engineering Graduate Theses & Dissertations

In this work, microfabricated mechanical systems have been created in a variety of forms and operated to perform nanomaterials characterization tests. A simplified integrated test system was developed and used to collect data from a range of materials including gallium nitride nanowires. A new force estimation approach was developed which enables estimation of the forces provided by electrothermal microelectromechanical (MEMS) actuators, and with knowledge of a material specimen cross-section area, an estimation of the engineering stress within the nanomaterial specimen.

In an expanded design, a MEMS micromanipulator probe interfaced with a removable specimen holder, also known as a test coupon ...