Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis Of Mild–Hard Aao Templates For Studying Magnetic Interactions Between Metal Nanowires, Jin-Hee Lim, Aurelian Rotaru, Seong-Gi Min, Leszek Malkinski, John B. Wiley Nov 2010

Synthesis Of Mild–Hard Aao Templates For Studying Magnetic Interactions Between Metal Nanowires, Jin-Hee Lim, Aurelian Rotaru, Seong-Gi Min, Leszek Malkinski, John B. Wiley

Physics Faculty Publications

The sequential application of mild and hard anodization techniques in the fabrication of porous aluminamembranes allows one to decrease the number of continuous pores in anodized aluminium oxide (AAO) templates. Initially, standard mild anodization techniques were used to create porous templates with 100 nm interpore distances and 70 nm pore diameters. Hard anodization treatment on the same membrane then produced interpore distances of about 265 nm with diameters of 110 nm. At the interface between the two anodization steps, many of the mild-side pores were terminated to create a mild–hard membrane (Mi–Ha AAO) where the functional interpore distances were 200–300 …


Negative Dielectrophoretic Capture Of Bacterial Spores In Food Matrices, Mehti Koklu, Seungkyung Park, Suresh D. Pillai, Ali Beskok Sep 2010

Negative Dielectrophoretic Capture Of Bacterial Spores In Food Matrices, Mehti Koklu, Seungkyung Park, Suresh D. Pillai, Ali Beskok

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S/m), apple juice (0.225 S/m), and milk (0.525 S/m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and …


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Artificial Intelligence: Soon To Be The World’S Greatest Intelligence, Or Just A Wild Dream?, Edward R. Kollett Mar 2010

Artificial Intelligence: Soon To Be The World’S Greatest Intelligence, Or Just A Wild Dream?, Edward R. Kollett

Academic Symposium of Undergraduate Scholarship

The purpose of the paper was to examine the field of artificial intelligence. In particular, the paper focused on what has been accomplished towards the goal of making a machine that can think like a human, and the hardships that researchers in the field has faced. It also touched upon the potential outcomes of success. Why is this paper important? As computers become more powerful, the common conception is that they are becoming more intelligent. As computers become more integrated with society and more connected with each other, people again believe they are becoming smarter. Therefore, it is important that …


Microscopic And Spectroscopic Studies Of Thermally Enhanced Electrospun Pmma Micro- And Nanofibers, Sean Pelfrey, Travis Cantu, Michael R. Papantonakis, Duane L. Simonson, R. Andrew Mcgill, Javier Macossay-Torres Mar 2010

Microscopic And Spectroscopic Studies Of Thermally Enhanced Electrospun Pmma Micro- And Nanofibers, Sean Pelfrey, Travis Cantu, Michael R. Papantonakis, Duane L. Simonson, R. Andrew Mcgill, Javier Macossay-Torres

Chemistry Faculty Publications and Presentations

Carbon nanofibers (CNFs) have been incorporated into poly(methyl methacrylate) (PMMA) through electrospinning. The resulting micro- and nanofibers have been characterized by Scanning Electron Microscopy (SEM), which confirmed fiber formation and demonstrated a core-sheath structure of the PMMA fibers. Thermogravimetric Analysis (TGA) was used to obtain the thermal properties of the materials, indicating an enhancement in the thermal properties of the composite fibers. In addition, Fourier Transform Infrared Spectroscopy (FTIR) was utilized to investigate the interactions of PMMA micro- and nanofibers with CNFs, demonstrating the preferred sites of intermolecular interactions between the polymer matrix and the filler.


Automated Nanocrystal Orientation And Phase Mapping In The Transmission Electron Microscope On The Basis Of Precession Electron Diffraction, Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys, Sergei Rouvimov, Peter Moeck Mar 2010

Automated Nanocrystal Orientation And Phase Mapping In The Transmission Electron Microscope On The Basis Of Precession Electron Diffraction, Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys, Sergei Rouvimov, Peter Moeck

Physics Faculty Publications and Presentations

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope is described. It is primarily based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. Precession electron diffraction patterns are especially useful for this purpose. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any older or newer mid-voltage transmission electron microscope (TEM). Experimentally obtained crystal phase and orientation maps are shown for a variety of samples. Comprehensive commercial and open-access crystallographic databases may be used …


Sorption Of Bovine Serum Albumin On Nano And Bulk Oxide Particles, Lei Song Jan 2010

Sorption Of Bovine Serum Albumin On Nano And Bulk Oxide Particles, Lei Song

Masters Theses 1911 - February 2014

Manufactured oxide nanoparticles (NPs) have large production and widespread applications, which will inevitably enter the environment. NPs can interact with proteins in living beings due to the fact that NPs can transport into blood or across cell membranes into cells. Conformational change of protein molecules after sorption on oxide NPs has been reported. Therefore, it is important to understand the adsorption mechanism of protein onto oxide NPs surfaces. Although few works have reported protein adsorption behaviors, a general systematic comparison of the effects of particle size and surface groups on protein adsorption by widely studied NPs still needs to be …


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Far-Field Optical Nanoscopy Based On Continuous Wave Laser Stimulated Emission Depletion, C. Kuang, Wei Zhao, Guiren Wang Jan 2010

Far-Field Optical Nanoscopy Based On Continuous Wave Laser Stimulated Emission Depletion, C. Kuang, Wei Zhao, Guiren Wang

Faculty Publications

Stimulated emission depletion (STED) microscopy is one of the breakthrough technologies that belong to far-field optical microscopy and can achieve nanoscale spatial resolution. We demonstrate a far-field optical nanoscopy based on continuous wave lasers with different wavelengths, i.e., violet and green lasers for excitation and STED, respectively. Fluorescent dyes Coumarin 102 and Atto 390 are used for validating the depletion efficiency. Fluorescent nanoparticles are selected for characterizing the spatial resolution of the STED system. Linear scanning of the laser beams of the STED system along one line of a microscope slide, which is coated with the nanoparticles, indicates that a …


Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo Jan 2010

Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo

Mechanical & Aerospace Engineering Faculty Publications

Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle's zeta potential to that of microchannel. © …