Open Access. Powered by Scholars. Published by Universities.^{®}

#
Nanoscience and Nanotechnology *Commons*^{™}

Open Access. Powered by Scholars. Published by Universities.^{®}

- Institution

- Publication Type

- File Type

Articles **1** - **8** of ** 8**

## Full-Text Articles in Nanoscience and Nanotechnology

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

#### Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

*Mathematics Faculty Publications*

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

#### Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

*Mathematics Faculty Publications*

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

#### Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

*Mikhail Khenner*

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

#### Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

*Mathematics Faculty Publications*

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

*Mathematics Faculty Publications*

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.

A Tangent-Plane, Marker-Particle Method For The Computation Of Three-Dimensional Solid Surfaces Evolving By Surface Diffusion On A Substrate, Ping Du, Mikhail Khenner, Harris Wong

#### A Tangent-Plane, Marker-Particle Method For The Computation Of Three-Dimensional Solid Surfaces Evolving By Surface Diffusion On A Substrate, Ping Du, Mikhail Khenner, Harris Wong

*Mikhail Khenner*

We introduce a marker-particle method for the computation of three-dimensional solid surface morphologies evolving by surface diffusion. The method does not use gridding of surfaces or numerical differentiation, and applies to surfaces with finite slopes and overhangs. We demonstrate the method by computing the evolution of perturbed cylindrical wires on a substrate. We show that computed growth rates at early times agree with those predicted by the linear stability analysis. Furthermore, when the marker particles are redistributed periodically to maintain even spacing, the method can follow breakup of the wire.

*Mikhail Khenner*

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O#1;#3;Bi#2;, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.

Thickness-Dependent Spontaneous Dewetting Morphology Of Ultrathin Ag Films, H Krishna, R Sachan, J Strader, C Favazza, Mikhail Khenner, Ramki Kalyanaraman

#### Thickness-Dependent Spontaneous Dewetting Morphology Of Ultrathin Ag Films, H Krishna, R Sachan, J Strader, C Favazza, Mikhail Khenner, Ramki Kalyanaraman

*Mikhail Khenner*

We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is found to be film thickness dependent. For films with thickness h between 2<=h<=9.5 nm, the intermediate stages of the morphology consisted of bicontinuous structures. For films 11.5<=h<=20 nm, the intermediate stages consisted of regularly-sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films [A. Shama et al, Phys. Rev. Lett., v81, pp3463 (1998); R. Seemann et al, J. Phys. Cond. Matt., v13, pp4925, (2001)]. Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.