Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula May 2009

Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nanoporous anodic aluminum oxide has traditionally been made in one of two ways: "Mild Anodization (MA)" or "Hard Anodization (HA)". The former method produces self-ordered pore structures but it is slow and only works for a narrow range of processing conditions; the latter method, which is widely used in the aluminum industry, is faster but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the MA and HA processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic …


Magnetic Sensors For Biodetection, Pranjali Vineet Sneha Deshpande May 2009

Magnetic Sensors For Biodetection, Pranjali Vineet Sneha Deshpande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of thesis is to design magnetic sensor for detection of nanoparticles. Recently integrating the standard laboratory techniques into integrated system on chip is growing attention. Recent development is to combine magnetic markers and magnetoresistive sensors together in magnetic chip. In this thesis two magnetoresistive sensors were studied and designed.

By applying magnetic fields, magnetic nanoparticles can be manipulated on-chip, which can be utilized to pull the molecules to specific binding sites or to test the binding strength and distinguish between specifically and non-specifically bound molecules

Magnetoresistive sensors are compatible with the semiconductor industry which provides electronic signal directly …


Substituent Effect On The Electronic And Assembling Properties Of Asymmetric Phenazine Derivatives, Bin Cao Jan 2009

Substituent Effect On The Electronic And Assembling Properties Of Asymmetric Phenazine Derivatives, Bin Cao

UNLV Theses, Dissertations, Professional Papers, and Capstones

Currently, one-dimensional (1-D) nanostructures have drawn much interest because of their potential applications for nanoscale optoelectronic devices. Self-assembly (SA) based on π-conjugated systems through various intermolecular interactions has been widely used to produce 1-D nanostructure. Morphology of the assembled structures can be modified by incorporating substituents, which provide additional secondary interactions. Meanwhile, those substituents also influence the electronic properties of the molecules. Previous studies have made little effort to systematically study subsistent effects on both electronic and SA properties.

The primary objective of this research is to generate controllable 1-D structures through SA, and to provide a fundamental understanding of …


Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann Jan 2009

Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the main barriers to commercialization of polymer electrolyte membrane fuel cells systems is cost, which is largely due to the need of platinum (Pt)-containing catalysts. In this thesis we investigate bimetallic systems consisting of a base metal (copper) and a noble metal (palladium) that, as an alloy on the nanoscale, mimic the electronic properties that make Pt desirable as a catalyst.

We present a detailed investigation of the electronic structure of carbon-supported Pd/Cu nanoparticle catalysts, model bilayer thin film systems, alloys, and various metal reference samples. We have investigated the valence band structure of the catalysts using a …


Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen Jan 2009

Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen

Mechanical Engineering Faculty Research

A finite-volume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge …


Metal Induced Crystallization Of Silicon Thin Films, Sandeep Kumar Raju Sangaraju Jan 2009

Metal Induced Crystallization Of Silicon Thin Films, Sandeep Kumar Raju Sangaraju

UNLV Theses, Dissertations, Professional Papers, and Capstones

Low temperature crystallization of thin film silicon is important for many industrial applications including flat panel displays and silicon thin film solar cells. Unfortunately this remains a major challenge since crystallization temperature of silicon is above 1,000 degrees Celsius, thus limiting to substrates that can tolerate high temperatures. The inability to deposit crystalline thin films on glass substrates is the reason why flat panel display industry uses amorphous silicon for LCD active matrix displays. Thus the ability to deposit crystallized thin film silicon at low temperatures will have significant impact on thin film silicon applications. It has been observed that …