Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Nanoparticles

2014

Discipline
Institution
Publication

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman Oct 2014

Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman

Doctoral Dissertations

Personalized medicine requires the development of new technologies for controlled or targeted drug delivery. Three-dimensional (3D) printing and additive manufacturing techniques can be used to generate customized constructs for bioactive compound delivery. Nanotechnology in the form of nanoparticles, used as a stand-alone construct or for material enhancements, can significantly improve established biomaterials such as PMMA based bone cements or enable new technology to have enhanced capabilities. Combinations of the technologies can be used in such applications as infectious disease treatments, chemotherapeutic targeted drug delivery or targeted delivery of nearly any bioactive compound.

Chemotherapeutic or antibiotic enhanced 3D printing filaments were ...


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate ...


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses and Project Reports

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual ...


Preparation Of Supported Metal Catalysts By Atomic And Molecular Layer Deposition For Improved Catalytic Performance, Troy Donald Gould Jan 2014

Preparation Of Supported Metal Catalysts By Atomic And Molecular Layer Deposition For Improved Catalytic Performance, Troy Donald Gould

Chemical & Biological Engineering Graduate Theses & Dissertations

Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity.

This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm ...


Synthesis And Functionalization Of Gold Nanoparticles Using Chemically Modified Ssdna, Philip Gerard Calabrese Jan 2014

Synthesis And Functionalization Of Gold Nanoparticles Using Chemically Modified Ssdna, Philip Gerard Calabrese

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a ...


Thermal Conductivity Of Alumina And Silica Nanofluids, Julian Bernal Castellanos Jan 2014

Thermal Conductivity Of Alumina And Silica Nanofluids, Julian Bernal Castellanos

All Theses, Dissertations, and Other Capstone Projects

This thesis studies the effects of the base fluid, particle type/size, and volumetric concentration on the thermal conductivity of Alumina and Silica nanofluids. The effects of base fluid were observed by preparing samples using ethylene glycol (EG), water, and mixtures of EG/water as the base fluid and Al2O3 (10 nm) nanoparticles. The particles type/size and volumetric concentration effects were tested by preparing samples of nanofluids using Al2O3 (10nm), Al2O3 (150nm), SiO2 (15 nm), and SiO2 (80 nm) nanoparticles and ionized water as base fluid at different volumetric concentrations. All samples were mixed using a sonicator for 30 ...


The Optical Properties Of Spiky Gold Nanoshells, Simon Hastings Jan 2014

The Optical Properties Of Spiky Gold Nanoshells, Simon Hastings

Publicly Accessible Penn Dissertations

Plasmonic nanoparticles are a powerful and versatile tool for molecular sensing, drug delivery, and cancer treatment. When exposed to incident light, these nanoparticles have greatly increased far-field scattering and near-field enhancement. Spiky gold nanoshells are a recently developed class of nanoparticles composed of sharp gold spikes decorating a polystyrene core. Spiky nanoshells are synthesized using the templated surfactant-assisted seed growth method, which enables extensive control of the nanoparticle morphology. Here, it is shown that these particles have a tailorable far-field resonance, extremely uniform single-particle surface enhanced Raman scattering, and modal interference in dark-field microscopy measurements. Finite-difference time-domain simulations are performed ...


Role Of Surface Chemistry In Nanoscale Electrokinetic Transport, Secuk Atalay Jan 2014

Role Of Surface Chemistry In Nanoscale Electrokinetic Transport, Secuk Atalay

Mechanical & Aerospace Engineering Theses & Dissertations

This dissertation work presents the efforts to study the electrofluidics phenomena, with a focus on surface charge properties in nanoscale systems with the potential applications in imaging, energy conversion, ultrafiltration, DNA analysis/sequencing, DNA and protein transport, drug delivery, biological/chemical agent detection and micro/nano chip sensors.

Since the ion or molecular or particle transport and also liquid confinement in nano-structures are strongly dominated by the surface charge properties, in regards of the fundamental understanding of electrofluidics at nanoscale, we have used surface charge chemistry properties based on 2-pK charging mechanism. Using this mechanism, we theoretically and analytically showed ...