Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Nanoparticles

Mechanics of Materials

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Effect Of Nanoparticle Additives On The Tribological Behavior Of Oil Under Boundary Lubrication, Yosef Jazaa Jan 2018

Effect Of Nanoparticle Additives On The Tribological Behavior Of Oil Under Boundary Lubrication, Yosef Jazaa

Graduate Theses and Dissertations

In this study, three different nanoparticles (CuO, WC, WS2) of comparable nominal diameter, were added to a Polyalphaolefin (PAO) base oil to evaluate tribological response in the boundary lubrication regime. The concentration of particles was fixed at 1% by weight for this study and different surfactants (Oleic acid, polyisobutylene succinimide) and dispersion methods were employed to determine the impact on agglomeration and the observed tribological response. The results showed that of the methods studied, adding 10 % Oleic acid (OA) while sonicating the particles for 30 minutes reduced the agglomeration the most and adding 1% Oleic acid while sonicating the particles ...


Bottom-Up Approach To Fabricate Nanostructured Thin Films From Colloidal Nanocrystal Precursors, Santosh Shaw Jan 2017

Bottom-Up Approach To Fabricate Nanostructured Thin Films From Colloidal Nanocrystal Precursors, Santosh Shaw

Graduate Theses and Dissertations

Control over microstructures at the nanoscale (<100nm) still seems challenging due to, among other things, the stochastic nature of nucleation in the bulk phase. The densification of assemblies of ligand-capped nanocrystals (colloidal nanocrystal assemblies, CNAs) could bypass this challenge that limits our control over the nanostructure and, therefore, the properties of materials. However, the removal of the ligands and the cracking that follows it are the two critical hurdles that have been stymieing this approach.

We show that low-pressure plasma processing can effectively remove ligands from CNAs (down to 0.6 at.% of carbon which can be accounted for adventitious carbon) without harming the properties of the inorganic cores of the nanoparticles and the structure of CNAs. The cracking of CNAs is correlated with the structure of the CNAs, which can be controlled and easily predicted by Hansen solubility parameters of solvent in which the nanoparticles are dispersed. While a fully solvated ligand shell leads to the formation of close-packed ordered CNAs – which cracked after self-assembly or ligand removal ...