Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead Dec 2016

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead

Theses and Dissertations

The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks ...


In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch May 2015

In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch

UNLV Theses, Dissertations, Professional Papers, and Capstones

Technological advances in the ability to construct and manipulate nanoscale particles have opened up the possibility of using solid metallic nanoparticles and mixed metal nanoshells as a means to increase dose enhancement and treatment efficacy to tumors. In order for nanoparticles to be an effective form of treatment, they must be delivered to tumors in sufficient concentrations so that there is a dose enhancement factor due to ionizing radiation, as well as being essentially non-toxic to healthy cells. Gold nanoparticles and silica-gold nanoshells fit these requirements. Gold has a high atomic number (Z=79), which gives a larger cross section ...


Synthesis And Functionalization Of Gold Nanoparticles Using Chemically Modified Ssdna, Philip Gerard Calabrese Jan 2014

Synthesis And Functionalization Of Gold Nanoparticles Using Chemically Modified Ssdna, Philip Gerard Calabrese

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a ...


Design Of Novel Nano-Carriers For Multi-Enzyme Co-Localization, Feng Jia Jan 2013

Design Of Novel Nano-Carriers For Multi-Enzyme Co-Localization, Feng Jia

Graduate Theses and Dissertations

The widely existing MECs in Nature have inspired researchers to design synthetic analogs to promote the overall catalytic efficiency in vitro by co-localizing multiple enzymes to mimic the MECs' unique functionalities. A number of efforts have been devoted to designing synthetic MECs in the past couples of decades. This thesis work has focused on developing novel strategies based on enzyme immobilization to design nano-carriers for multi-enzyme co-localization to realize kinetics enhancement and strong control of spatial arrangement of the enzymes. Three distinct approaches have been designed using different attachment methods and platforms.

First, the multifunctional polystyrene nanoparticles were designed for ...


Rna Mediated Assembly Of Nanostructures, Jessica Lynn Rouge Jan 2012

Rna Mediated Assembly Of Nanostructures, Jessica Lynn Rouge

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

The first chapter of this work presents a comprehensive look at RNA mediated nanoparticle formation. The overall goal of this research is to gain a deeper understanding of the RNA-particle formation mechanism and the basic properties of the materials selected by modified RNA molecules. Understanding such RNA-substrate interactions and how they translate into the physical and chemical characteristics of the nanoparticles they create are important fundamental concepts when considering these biotemplated materials as potential chemical catalysts. The RNA sequences discussed in the first chapter (referred to as Pdases) were discovered using RNA in vitro selection techniques. These Pdases were found ...