Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han Apr 2016

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han

Chemistry & Biochemistry Theses & Dissertations

In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. Chapter 2 describes the influence of resorcinarene surfactants functionalized with amine- and thiol- headgroups in determining the morphology of monometallic Pt nanoparticles synthesized via the Brust-Schiffrin reaction. We found that while resorcinarene benzylthiol can lead to the formation of highly branched Pt nanostructures, resorcinarene amine can lead to the formation of anisotropic crystalline Pt nanoparticles. Further, we have evaluated the influence of resorcinarene ligands in determining the catalytic activity of these ...


Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Jan 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In ...


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Jan 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials.

This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively with ...


Optical Resonators And Fiber Tapers As Transducers For Detection Of Nanoparticles And Bio-Molecules, Huzeyfe Yilmaz Aug 2014

Optical Resonators And Fiber Tapers As Transducers For Detection Of Nanoparticles And Bio-Molecules, Huzeyfe Yilmaz

Engineering and Applied Science Theses & Dissertations

In recent years, detection of biological interactions on single molecule level has aspired many researchers to investigate several optical, chemical, electrical and mechanical sensing tools. Among these tools, toroidal optical resonators lead the way in detection of the smallest particle/molecule with the real time measurements. In this work, bio-sensing capabilities of toroidal optical resonators are investigated. Bio-sensing is realized via measuring the analyte-antigen interaction while the antigen is immobilized through a novel functionalization method.

Not long ago, detection of single nanoparticles using optical resonators has been accomplished however the need for cost-effective and practical transducers demands simpler tools. A ...


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Jun 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction.

Hydrophilic MNPs were shown to drive the self-assembly of BCPs ...


Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro Feb 2014

Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro

All Dissertations, Theses, and Capstone Projects

This thesis describes the surface modification of barium strontium titanate nanoparticles for use in polymer/ceramic composite thin film capacitors with resultant improved dielectric and film-making properties. Phosphonic acid-type ligands proved to be most effective for surface conjugation to the surface of the barium strontium titanate nanoparticles. Amine-terminated ligands proved to be effective at removing surface adsorbed water before being almost entirely removed during the sample washing stage. Carboxylic acid terminated ligands proved to adhere less well to the nanoparticle than the phosphonic acid, but resulted in thin films with a higher dielectric constant, which was more stable in the ...


Nucleation And Growth Of Metals On Carbon Surfaces, David Victor Appy Jan 2014

Nucleation And Growth Of Metals On Carbon Surfaces, David Victor Appy

Graduate Theses and Dissertations

This thesis work presents an investigation of the basic interaction between metals and the carbon surfaces HOPG and amorphous carbon. This work was motivated by the discovery of a family of metal nanowires which grow as single crystals protruding substantially perpendicular to a substrate, where the substrate is held at elevated temperature (800-1100 K). The most prolific growth is seen for Cu on amorphous carbon substrates. The fabrication and properties of these wires have been pioneered by our collaborator, Dr. Gunther Richter, at the Max Planck Institute for Intelligent Systems in Stuttgart, Germany. They have potential uses in nanoscale mechanical ...


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore ...


Rod-Like Plasmonic Nanoparticles As Optical Building Blocks: How Differences In Particle Shape And Structural Geometry Influence Optical Signal, Anthony Shawn Stender Jan 2013

Rod-Like Plasmonic Nanoparticles As Optical Building Blocks: How Differences In Particle Shape And Structural Geometry Influence Optical Signal, Anthony Shawn Stender

Graduate Theses and Dissertations

Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles.

In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod at ...


Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev Aug 2012

Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev

All Dissertations

This Dissertation is focused on the development of new methods for characterization and control of fluid rheology using magnetic nanorods. This Dissertation consists of five chapters. In the first chapter, we review current microrheologial methods and develop a Magnetic Rotational Spectroscopy (MRS) model describing nanorod response to a rotating magnetic field. Using numerical modeling, we analyze the effects of materials parameters of nanorods and fluids on the MRS characteristic features. The model is designed for a specific experimental protocol. We introduce and examine physical parameters which can be measured experimentally. The model allows identification of MRS features enabling the calculation ...


Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process, Ted Wangensteen Jan 2012

Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process, Ted Wangensteen

Graduate Theses and Dissertations

Nanoparticle and nanoparticulate films have been grown by a unique approach combining a microwave and nebulized droplets where the concentration and thus the resulting particle size can be controlled. The goal of such a scalable approach was to achieve it with the least number of steps, and without using expensive high purity chemicals or the precautions necessary to work with such chemicals. This approach was developed as a result of first using a laser unsuccessfully to achieve the desired films and particles. Some problems with the laser approach for growing desired films were solved by substituting the higher energy microwave ...