Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Feed-Forward Inhibitory Circuits In Hippocampus And Their Computational Role In Fragile X Syndrome, Sarah Lauren Wahlstrom Helgren May 2016

Feed-Forward Inhibitory Circuits In Hippocampus And Their Computational Role In Fragile X Syndrome, Sarah Lauren Wahlstrom Helgren

McKelvey School of Engineering Theses & Dissertations

Feed-forward inhibitory (FFI) circuits are canonical neural microcircuits. They are unique in that they are comprised of excitation rapidly followed by a time-locked inhibition. This sequence provides for a powerful computational tool, but also a challenge in the analysis and study of these circuits. In this work, mechanisms and computations of two hippocampal FFI circuits have been examined. Specifically, the modulation of synaptic strength of the excitation and the inhibition is studied during constant-frequency and naturalistic stimulus patterns to reveal how FFI circuit properties and operations are dynamically modulated during ongoing activity. In the first part, the FFI circuit dysfunction …


Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos Jan 2016

Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos

Open Access Theses & Dissertations

This research effort develops an integrated system for CO2 removal and O2 production. A unique material, dodeca-tungsto-phosphoric acid (H3PO4W12O3; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC2H5)4 or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O2, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H2O within the crystal also adsorbs CO2. It can also be cross-linked with other polymers such as polycarbonate, …