Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2015

Western University

Discipline
Keyword

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche Dec 2015

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche

Electronic Thesis and Dissertation Repository

Solar energy is a promising solution towards meeting the world’s ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with potential for commercial application, but are plagued by inefficiency due to their poor sunlight absorption. Silver nanoparticles have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance causes local hot spots, resulting in cell deterioration. This thesis studies the mitigation of thermal energy loss of plasmon-enhanced DSSCs by the co-incorporation of zirconia, a well-known thermostabilizer, into the cell’s photoactive material. TiO2 was also synthesized using green bio-sourced solvents in supercritical CO2 ...


Nanostructured Carbon Materials For Active And Durable Electrocatalysts And Supports In Fuel Cells, Adam Riese Sep 2015

Nanostructured Carbon Materials For Active And Durable Electrocatalysts And Supports In Fuel Cells, Adam Riese

Electronic Thesis and Dissertation Repository

Meeting the energy demands of the future will require a breadth of technologies and materials for generating and converting electricity. Increasing activity and reducing costs of electrocatalysts for fuel cells is among the most important challenges for the technology. With advances in nanomaterials there has been increased interest in creating novel catalysts with both high activity and excellent long-term durability. This thesis aims to understand how modification of nanostructured carbons can be used to improve the activity and durability of catalysts and supports for the oxygen reduction reaction (ORR). Using an integrating approach to synthesis, characterization, and electrochemical testing, it ...


Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian Sep 2015

Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian

Electronic Thesis and Dissertation Repository

Microbial fuel cells (MFCs) are widely researched for application in wastewater treatment. However, the current anodes used in MFCs often suffer from high fabrication cost and uncontrollable pore sizes. In this thesis, three-dimensional printing technique was utilized to fabricate anodes with different micro pore sizes for MFCs. Copper coating and carbonization were applied to the printed polymer anodes to increase the conductivity and specific surface area. Voltages of MFCs with various anodes were measured as well as other electrochemical tests such as linear sweep voltammetry and electrochemical impedance spectroscopy. 3D copper porous anode produced higher maximum voltages and power densities ...


Thermal Kinetics Of Ion Irradiation Hardening In Selected Alloys For The Canadian Gen. Iv Nuclear Reactor Concept, Heygaan Rajakumar Aug 2015

Thermal Kinetics Of Ion Irradiation Hardening In Selected Alloys For The Canadian Gen. Iv Nuclear Reactor Concept, Heygaan Rajakumar

Electronic Thesis and Dissertation Repository

Canada is designing supercritical water fission reactors (SCWR) to increase the thermal efficiency of nuclear power generation from ~34% to ~48%. The temperature and pressure of a supercritical water reactor core is very high compared to a CANDU reactor. This thesis examines irradiation hardening and thermal recovery of two candidate alloys, AISI 310 and Inconel 800H, for the Canadian SCWR.

Samples of both alloys are mechanically ground and polished, then irradiated using 8.0 MeV Fe ions. The use of ion irradiation safely and quickly simulates neutron damage. The change in the hardness of the samples is then studied during ...


Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur Aug 2015

Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur

Electronic Thesis and Dissertation Repository

This thesis began by verifying that nanoscale zero valent iron (nZVI) synthesis methods could be scaled up and implemented at the field scale in a safe manner. This led to successful demonstration of nZVI injection and mobility under constant head gravity injection into a contaminated utility corridor in Sarnia, Ontario. Where field studies have fallen short in the past was linking the somewhat qualitative field geochemical parameters to other evidence of nZVI transport. Definitive nZVI detection was elusive in previous field studies due to the highly reactive nature of the particles caused by their high surface area. nZVI was detected ...


Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang May 2015

Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang

Electronic Thesis and Dissertation Repository

Wavelength to refractive index sensitivity and resonance wavelength position are two very important performance characteristics for nanohole array based surface plasmon resonance sensors while these characteristics are mostly researched on periodic nanohole arrays, instead of quasiperiodic nanohole arrays. This thesis deduces theoretical equations about the wavelength to refractive index sensitivity and resonance wavelength position of quasiperiodic nanohole arrays. Theoretical analysis shows that wavelength to refractive index sensitivity is not associated with geometry pattern, hole size or pitch but with the wavelength. A novel surface plasmon resonance platform is built by transferring gold films patterned with quasiperiodic nanohole arrays to the ...