Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Nanoscience and Nanotechnology

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche Dec 2015

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche

Electronic Thesis and Dissertation Repository

Solar energy is a promising solution towards meeting the world’s ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with potential for commercial application, but are plagued by inefficiency due to their poor sunlight absorption. Silver nanoparticles have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance causes local hot spots, resulting in cell deterioration. This thesis studies the mitigation of thermal energy loss of plasmon-enhanced DSSCs by the co-incorporation of zirconia, a well-known thermostabilizer, into the cell’s photoactive material. TiO2 was also synthesized using green bio-sourced solvents in supercritical CO2 ...


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are ...


Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian Sep 2015

Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian

Electronic Thesis and Dissertation Repository

Microbial fuel cells (MFCs) are widely researched for application in wastewater treatment. However, the current anodes used in MFCs often suffer from high fabrication cost and uncontrollable pore sizes. In this thesis, three-dimensional printing technique was utilized to fabricate anodes with different micro pore sizes for MFCs. Copper coating and carbonization were applied to the printed polymer anodes to increase the conductivity and specific surface area. Voltages of MFCs with various anodes were measured as well as other electrochemical tests such as linear sweep voltammetry and electrochemical impedance spectroscopy. 3D copper porous anode produced higher maximum voltages and power densities ...


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer ...


Computer Simulations Of Propulsion Of Self-Propelled Flexible Nanobody, Ye Luo Jun 2015

Computer Simulations Of Propulsion Of Self-Propelled Flexible Nanobody, Ye Luo

Master's Theses

Swimming bodies such as flagellum and fishes are found everywhere in liquid environment. The research of simulation of swimmers is one of the most important branches among the field of biophysics. This study focus on the direct computer simulation of self-propelled flexible nanobody in fluid field. Two new objectives is studied based on the previous research of Tai-hsien Wu and Dewei ai (2014)[1]. ln Wu's article, the front end of micro swimming body is fixed and the migration of swimmers is neglected. For a further study, one of new targets is to release the head in 3-D simulation ...


Functional Clay Nanotubes And Composites, Yafei Zhao Apr 2015

Functional Clay Nanotubes And Composites, Yafei Zhao

Doctoral Dissertations

Tubular nanomaterials and their composites have been extensively studied in recent years in the fields of physics, chemistry, biology, and biomedicine. Carbon nanotube is the most commonly studied tubular nanomaterial; however, toxicity and high cost make it less attractive in industry and thus restricts its applications. Halloysite nanotubes, which are available in abundance in the United States as well as in other countries around the world, is a low-cost, unique and versatile aluminosilicate mineral with a chemical formula of Al4Si4O10(OH)8·nH2O. Basically, the halloysite tube diameter is around 50 nm and the length varies with different locations ranging ...


Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang Jan 2015

Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang

Theses and Dissertations

Biomolecules on cell surfaces play critical roles in diverse biological and physiological processes. However, conventional bulk scale techniques are unable to clarify the density and distribution of specific biomolecules in situ on single, living cell surfaces at the micro or nanoscale. In this work, a single cell analysis technique based on Atomic Force Microscopy (AFM) is developed to spatially identify biomolecules and characterize nanomechanical properties on single cell surfaces. The unique advantage of these AFM-based techniques lies in the ability to operate in situ (in a non-destructive fashion) and in real time, under physiological conditions or controlled micro-environments.

First, AFM-based ...


Designed Synthesis Of Nanoporous Organic Polymers For Selective Gas Uptake And Catalytic Applications, Pezhman Arab Jan 2015

Designed Synthesis Of Nanoporous Organic Polymers For Selective Gas Uptake And Catalytic Applications, Pezhman Arab

Theses and Dissertations

Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture.

Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to ...


Engineering A Library Of Anisotropic Building Blocks For Dna-Programmed Colloidal Self-Assembly, James Thomas Mcginley Jan 2015

Engineering A Library Of Anisotropic Building Blocks For Dna-Programmed Colloidal Self-Assembly, James Thomas Mcginley

Publicly Accessible Penn Dissertations

Programmable DNA interactions are an effective and versatile tool in the field of colloidal directed self-assembly. Colloidal systems are programmed by manipulating a variety of tunable parameters, such as particle sizes and DNA interaction strengths, and can self-assemble into a large and growing variety of colloidal crystal and gel structures. Since isotropically-interacting spherical particles generally form close-packed structures, the production and use of building blocks with anisotropic interactions, such as polyhedral particles, colloidal clusters, and patchy colloids, has been a rich research area in recent years.

This work represents a true expansion of the capabilities of DNA-directed colloidal assemblies, and ...


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Jan 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials.

This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively with ...


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated ...