Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Nanoscience and Microsystems ETDs

Biomaterials

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez Mar 2019

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these structures …


Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush Dec 2018

Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush

Nanoscience and Microsystems ETDs

As a cell mediated-process, valvular heart disease (VHD) results in significant morbidity and mortality world-wide. In the US alone, valvular heart disease VHD is estimated to affect 2.5% of the population with a disproportionate impact on an increasing elderly populous. It is well understood that the primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into an osteoblastic-like phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood and a more complete characterization of VIC differentiation and phenotypic change is required before treatment of valve disease or …