Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai Nov 2018

Characterization Of Nanomaterials For Thermal Management Of Electronics, Amit Rai

Doctoral Dissertations

Recently, there has been a growing interest in flexible electronic devices as they are light, highly flexible, robust, and use less expensive substrate materials. Such devices are affected by thermal management issues that can reduce the device’s performance and reliability. Therefore, this work is focused on the study of the thermal properties of nanomaterials and the methods to address such issues. The goal is to enhance the effective thermal conductivity by adding nanomaterials to the polymer matrix or by structural modification of nanomaterials. The thermal conductivity of copper nanowire/polydimethylsiloxane and copper nanowire/polyurethane composites were measured and showed more than threefold …


Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan Nov 2018

Electrical Characterization Of Graphene And Nanodiamond Nanostructures, A Z M Nowzesh Hasan

Doctoral Dissertations

The electrical characterization on two-dimensional carbon-based graphene and nanodiamond materials was performed to improve charge transport properties for the label-free electrical biosensors. The charge transport in solution-gated graphene devices is affected by the impurities and disorders of the underlying dielectric interface and its interaction with the electrolytes. Advancement in field-effect ion sensing by introducing a dielectric isomorph, hexagonal boron nitride between graphene and silicon dioxide of a solution-gated graphene field-effect transistor was investigated. Increased transconductance due to increased charge carrier mobility is accompanied with larger ionic sensitivity. These findings define a standard to construct future graphene devices for biosensing and …


Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden Nov 2018

Nanoparticle Catalytic Enhancement Of Carbon Dioxide Reforming Of Methane For Hydrogen Production, Nicholas Groden

Doctoral Dissertations

The U.S. produces 5559.6 million metric tons of carbon dioxide annually, of which 21% is produced by industrial processes. Steam reforming, an industrial process that accounts for 95% of all hydrogen production in industry, produces 134.5 million metric tons of carbon dioxide or around 11% of the total carbon dioxide produced by industry. This carbon dioxide is then either emitted or goes through a sequestration process that accounts for 75% of the plant's operational costs. An alternative reaction to steam reforming is dry reforming, which utilizes carbon dioxide rather than emitting it and can be used in conjunction with current …


Probing Local Vacancy-Driven Resistive Switching In Metal Oxide Nanostructures, Jiaying Wang Oct 2018

Probing Local Vacancy-Driven Resistive Switching In Metal Oxide Nanostructures, Jiaying Wang

Doctoral Dissertations

Novel nonvolatile memory technologies garner intense research interest as conventional ash devices approach their physical limit. Memristors, often comprising an insulating thin film between two metal electrodes to constitute a class of two-terminal devices, enable a variety of important large data storage and data-driven computing applications. In addition to nonvolatile behavior, other features such as high scalability, low power consumption, and sub-nanosecond response times make memristors among the most attractive candidate systems. Their strength in electronic storage relies on the unique properties of the tunable variations in resistance induced from the accumulation of charged defects based on the applied bias …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat Mar 2018

Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat

Doctoral Dissertations

Engineering of supramolecular assemblies at molecular level renders functional nanomaterials that present explicit response to certain environmental changes. Systematic structure-property correlation studies will unravel the fundamental design constraints of these functional nanomaterials that fulfill the emergent need. This dissertation will primarily focus on understanding the role of rigidity and flexibility of functional groups within amphiphilic assemblies and employing this basic concept in drug delivery and diagnostics applications. Supramolecular assemblies formed by amphiphilic dendrimers and polymers are preferred for this study as they exhibit high thermodynamic stability and structural flexibility. The role of aromatic interaction on the unimer-aggregate dynamic equilibrium was …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …