Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Targeted Delivery Of Nrf2 Sirna Using Modular Polymeric Micellar Nanodelivery System For Efficient Target Gene Knockdown In Hepatocellular Carcinoma, Shaimaa Mohamed Ibrahim Yousef Jan 2016

Targeted Delivery Of Nrf2 Sirna Using Modular Polymeric Micellar Nanodelivery System For Efficient Target Gene Knockdown In Hepatocellular Carcinoma, Shaimaa Mohamed Ibrahim Yousef

Wayne State University Theses

Tumor selective drug delivery as well as chemotherapy associated multi drug resistance (MDR) pose tremendous hurdles for effective cancer therapy. In this regard, designing multifunctional nanocarriers loaded with drug/gene payloads and engineered with tumor targeting ligands can serve as a modular platform for targeted drug/gene delivery. In this study we undertook the synthesis of a self-assembling block copolymer constructed using poly(styrene-co-maleic anhydride, partial iso-octyl ester) (SMAPIE) and branched polyethylenimine (PEI) as building blocks and evaluated its micelle forming ability, siRNA complexation and siRNA delivery potentials. In addition, we engineered galactosamine decorated nanomicelles using modular “click” chemistry based approaches for evaluating …


Novel Design And Synthesis Of Transition Metal Hydroxides And Oxides For Energy Storage Device Applications, Peifeng Li Jan 2016

Novel Design And Synthesis Of Transition Metal Hydroxides And Oxides For Energy Storage Device Applications, Peifeng Li

Wayne State University Theses

Supercapacitors (SCs) and Li-ion batteries (LIBs) are two types of important electrical energy storage devices with high power density and high energy density respectively. However, to satisfy the increasing demand of high-performance energy storage devices, the energy density of SCs and power/energy densities of LIBs have to be further improved. The exploration, research, and development of electrode materials with high-performance for applications in SCs and LIBs are still needed to meet the ever-increasing demand on energy and power densities. Herein, the amorphous Ni-Co-Mo ternary hydroxides nanoflakes for SCs and oxides nanoflakes for LIBs with ultrathin stature, abundant open spaces, and …


An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker Jan 2016

An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker

Wayne State University Dissertations

Second cervical segment spinal cord hemisection (C2Hx) results in ipsilateral hemidiaphragm paralysis. However, the intact latent crossed phrenic pathway can restore function spontaneously over time or immediately following drug administration.

WGA bound fluorochromes were administered to identify nuclei associated with diaphragm function in both the acute and chronic C2Hx models. WGA is unique in that it undergoes receptor mediated endocytosis and is transsynaptically transported across select physiologically active synapses. Comparison of labeling in the acutely injured to the chronically injured rat provided an anatomical map of spinal and supraspinal injury induced synaptic plasticity. The plasticity occurs over time in the …


Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain Jan 2016

Substrate Effects And Dielectric Integration In 2d Electronics, Bhim Prasad Chamlagain

Wayne State University Dissertations

The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene –C, Al2O3, SiO2 modified …


New Approaches To Chalcogenide Materials For Thermoelectrics: Lead Telluride-Based Nanostructures And Facile Synthesis Of Tetrahedrite And Doped Derivatives, Derak Justin James Jan 2016

New Approaches To Chalcogenide Materials For Thermoelectrics: Lead Telluride-Based Nanostructures And Facile Synthesis Of Tetrahedrite And Doped Derivatives, Derak Justin James

Wayne State University Dissertations

The overall purpose of this work is to address several of the roadblocks to use of thermoelectric materials for generation of electricity, namely inefficient processing of materials and low performance, commonly rated by the figure of merit, ZT=T2/tot. The ZT includes  as the Seebeck coefficient,  as electrical resistivity, T as the average temperature, and tot as total thermal conductivity. tot is the sum of electronic charge carrier (C) and lattice (L) contributions to thermal conductivity. Attempts to increase ZT in the literature to values >1 have focused on decreasing the thermal conductivity via nanostructuring or optimizing the electrical …


Electrocatalysis In Li-S Batteries, Hesham I. Al Salem Jan 2016

Electrocatalysis In Li-S Batteries, Hesham I. Al Salem

Wayne State University Dissertations

Stabilizing polysulfide-shuttle process while ensuring high sulfur loading holds the key to realize high theoretical energy density (2500 Wh/kg) of lithium-sulfur (Li-S) batteries. Though several carbon based porous materials have been used as host structures for sulfur and its intermediate polysulfides, the week adsorption of polysulfides on carbon surface and its poor reaction kinetics limits them from practical application. Here, we preset a novel ‘electcatalysis’ approach to stabilize polysulfide shuttle process and also enhance its red-ox kinetics. As a proof of concept, we have studied in-detail using conventional electrocatalyst i.e Pt/graphene composite, further the same extended to cost-effective electrocatalysts such …


Optimization Of Transition-Metal Dichalcogenides Based Field- Effect- Transistors Via Contact Engineering, Meeghage Madusanka Perera Jan 2016

Optimization Of Transition-Metal Dichalcogenides Based Field- Effect- Transistors Via Contact Engineering, Meeghage Madusanka Perera

Wayne State University Dissertations

ABSTRACT

Optimization of Transition-Metal Dichalcogenides based Field- Effect-Transistors via contact engineering

by

Meeghage M Perera

September , 2016

Advisor : Dr. Zhixian Zhou

Major: Physics (Condensed mater physics/nano-electronics)

Degree: Doctor of Philosophy

Layered transition Metal Dichalcogenides (TMDs) have demonstrated a wide range of remarkable properties for applications in next generation nano-electronics. These systems have displayed many “graphene-like” properties including a relatively high carrier mobility, mechanical flexibility, chemical and thermal stability, and moreover offer the significant advantage of a substantial band gap. However, the fabrication of high performance field-effect transistors (FETs) of TMDs is challenging mainly due to the formation of …


Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu Jan 2016

Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu

Wayne State University Dissertations

Lithium-ion batteries (LIBs) are currently the dominant powder source for personal computers and portable electronics. LIBs also play important roles in larger-scale applications, including electric drive vehicles (EVs, HEVs) and grid-energy storage. To meet the increasing demand for energy storage, it is very urgent and crucial to develop next-generation LIBs using alternative electrode materials. For example, carbon is still exclusively used as anode materials in current LIBs. However, the theoretical capacity of graphite (372 mA h g–1 based on LiC6) has almost been achieved, and it becomes one of the bottlenecks to further increase the energy density of LIBs based …