Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Nanoscale Investigations Of Thermal And Momentum Transport In Graphene – Water Systems, Drew Champion Marable May 2017

Nanoscale Investigations Of Thermal And Momentum Transport In Graphene – Water Systems, Drew Champion Marable

Masters Theses

Demand for miniaturized electronic devices has given rise to new challenges in thermal management. Integration with graphene, a two-dimensional (2D) material with excellent thermal properties, allows for further reduced sizes and combats thermal management issues within novel devices. Moreover, due to its wide availability and adequate thermal properties, liquid water is commonly used within traditional thermal systems to enhance cooling performance; as such, water is expected to yield similar performance in smaller-scale applications. However, at reduced sizes descending to the nanoscale realm, system behaviors deviate from traditional macroscale-based theory as interfacial effects become amplified. Employing insight provided by molecular dynamics …


Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales Dec 2015

Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales

Masters Theses

In this study, HfO2 [hafnium oxide] thin films are investigated extensively as part of indium gallium zinc oxide (IGZO) thin film transistor (TFT) devices. They are incorporated into the TFTs, both as a gate insulator and a passivation layer. First, the HfO2 [hafnium oxide] films themselves are investigated through an annealing study and through I-V and C-V measurements. Then, HfO2 [hafnium oxide] is suggested as a replacement for commonly used SiO2 [silicon dioxide] gate insulator, as it has a dielectric constant that is 4 – 6 times higher. This higher dielectric constant allows for comparable TFT performance at a lower …


Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng Aug 2010

Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng

Masters Theses

Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).

The function of the embedding media in describing the properties of wood cells is poorly understood. …