Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Nanoscience and Nanotechnology

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park Oct 2014

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park

Open Access Dissertations

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and …


Structural Characterization Of Multimetallic Nanoparticles, Vineetha Mukundan Oct 2014

Structural Characterization Of Multimetallic Nanoparticles, Vineetha Mukundan

Open Access Dissertations

Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10chemical ordering. …


Development Of A Static Bioactive Stent Prototype And Dynamic Aneurysm-On-A-Chip(Tm) Model For The Treatment Of Aneurysms, Lisa M. Reece Oct 2014

Development Of A Static Bioactive Stent Prototype And Dynamic Aneurysm-On-A-Chip(Tm) Model For The Treatment Of Aneurysms, Lisa M. Reece

Open Access Dissertations

Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. While these procedures can be effective, it would be advantageous to design a biologically active stent, modified with magnetic stent coatings, allowing cells to be manipulated to heal the arterial lining. Further, velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, but the shear force mechanisms effecting wound closure is elusive. Due to these factors, there is a definite need to cultivate …


Silica Nanoparticles As Vehicles For Therapy Delivery In Neurological Injury, Desiree Schenk Oct 2014

Silica Nanoparticles As Vehicles For Therapy Delivery In Neurological Injury, Desiree Schenk

Open Access Dissertations

Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of …


Role Of Group Ii Metabotropic Glutamate Receptor Subtype 2 (Mglur2) In Appetitive And Consummatory Aspects Of Ethanol Reinforcement, Kyle Allyson Windisch Oct 2014

Role Of Group Ii Metabotropic Glutamate Receptor Subtype 2 (Mglur2) In Appetitive And Consummatory Aspects Of Ethanol Reinforcement, Kyle Allyson Windisch

Open Access Dissertations

Background: Group II metabotropic glutamate receptors (mGluR2/3) are predominately presynaptically located Gi/o coupled receptors that are highly expressed in the cortex, nucleus accumbens, amygdala, and hippocampus. Previous studies suggest that group II mGluRs are involved in regulating ethanol (EtOH) consumption and seeking following extinction (Backstrom and Hyytia, 2005; Kufahl, et al., 2011). The sipper tube model, which allows for procedural separation of seeking and consumption, was used to further clarify the role of mGluR2/3 in EtOH-seeking and consumption. The non-selective group II mGluR agonist LY379268 (LY37) and selective mGluR2 positive allosteric modulator (PAM) BINA were used to determine the …


Nano-Engineered Polymers In Drug Delivery: Potential Approaches For Attenuation Of Secondary Injury After Spinal Cord Trauma, Wen Gao Oct 2014

Nano-Engineered Polymers In Drug Delivery: Potential Approaches For Attenuation Of Secondary Injury After Spinal Cord Trauma, Wen Gao

Open Access Dissertations

Secondary injury elicits a complex series of pathophysiological events after the primary spinal cord trauma and even after its implantation treatment for neural functional recovery. These secondary injuries include an up-regulation of glial cells associated reactive oxygen species, nitrogen species, and reactive astrogliosis, and they can result in various levels of cellular and tissue damage. The inhibition of them has been proved to lead to functional recovery of the spinal cord. In this study, we concentrated on developing polymers and nano-techniques based drug delivery strategies to eliminate these secondary injuries. ^ To maintain and improve the performance of the implants …


Nano-Modification For High Performance Cement Composites With Cellulose Nanocrystals And Carbon Nanotubes, Yizheng Cao Oct 2014

Nano-Modification For High Performance Cement Composites With Cellulose Nanocrystals And Carbon Nanotubes, Yizheng Cao

Open Access Dissertations

One of the new engineering frontiers is the exploration of infrastructure materials with novel combinations of properties that break traditional paradigms. The goal of this study is to utilize two different nano-fibers, cellulose nanocrystals (CNCs) and carbon nanotubes (CNTs) to modify the nanoscale structures of cement composites and thereby improve the performance at the macro-level. This study also evaluates the mechanism behind the modification, since fiber bridging, the most common reinforcing mechanism for fiber-reinforced composites, cannot be simply applied because CNCs are too short to bridge cracks in cement composites. ^ The mechanical tests show an increase in the flexural …


Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani Oct 2014

Dynamic Control Of Plasmonic Resonances With Graphene Based Nanostructures, Naresh Kumar Emani

Open Access Dissertations

Light incident on a metallic structure excites collective oscillations of electrons termed as plasmons. These plasmons are useful in control and manipulation of information in nanoscale dimensions and at high operating frequencies. Hence, the field of plasmonics opens up the possibility of developing nanoscale optoelectronic circuitry for computing and sensing applications. One of the challenges in this effort is the lack of tunable plasmonic resonance. Currently, the resonant wavelength of plasmonic structure is fixed by the material and structural parameters. Post-fabrication dynamic control of a plasmonic resonance is rather limited.^ In this thesis we explore the combination of optoelectrical properties …


Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh Oct 2014

Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh

Open Access Dissertations

Hierarchical structural interactions between components of cell microenvironment, the extracellular matrix (ECM), cytoplasm, nucleus and fluid, are important phenomena that decide cell level physiological process and tissue engineering applications. One of those tissue engineering modalities is freezing of biomaterials, important in a wide variety of biomedical applications including cryopreservation and cryosurgeries. In order to design these applications, freezing-induced changes of the cells and tissues and corresponding biophysical mechanisms need to be well understood. Although the effects of freezing on cells in suspension have been extensively studied, the intracellular mechanics of cells embedded in the extracellular matrix (ECM) during freezing are …


Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta Oct 2014

Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta

Open Access Dissertations

Along with the revolutionary discovery and development of carbon nanostructures, such as carbon nanotubes and graphitic sheets, has arrived the potential for their application in the fields of medicine, bioscience and engineering due to their exceptional structural, thermal and electrical properties. As roll-to-roll plasma deposition systems begin to provide means for large scale production of these nanodevices, a detailed understanding of the environment responsible for their synthesis is imperative in order to more accurately design and control the growth of carbon nanodevices. To date, the understanding of the chemistry and kinetics that govern the synthesis of carbon nanodevices is only …


Design And Analysis Of Solar Cells By Coupled Electrical - Optical Simulation, Xufeng Wang Oct 2014

Design And Analysis Of Solar Cells By Coupled Electrical - Optical Simulation, Xufeng Wang

Open Access Dissertations

Careful electrical design and optical design are both crucial for achieving high-efficiency solar cells. It is common to link these two aspects serially; the optical design is first done to minimize reflection and maximize light trapping, and then the resulting optical generation rate is input to the electrical simulation. For very high efficiency solar cells that approach the Shockley-Queisser limit, however, electrical and optical transports are tightly coupled in both directions. Photons generated by radiative recombination can be reabsorbed to create additional electron-hole pairs (so-called photon recycling), which decreases losses. A variety of novel photon management schemes are currently being …


Optical Direct-Write Nanolithography Based On Self-Assembled Resist, Meghana Akella Jul 2014

Optical Direct-Write Nanolithography Based On Self-Assembled Resist, Meghana Akella

Open Access Theses

Holographic display is being developed for next generation mobile phones. However, manufacturing of miniature gratings for the holographic projectors cost a few thousand dollars today, not making the concept practical for commercial purposes. In this thesis, we discuss the feasibility of self-assembled nanoparticles to manufacture holographic gratings cost-effectively and at the nanoscale. Using our approach, the gratings can be manufactured at the scale of 20nm and the cost per chip is expected to cost a few dollars.^ In this thesis, a hydrophobic SAM was used to modify the surface of silicon. Direct-write UV laser lithography was used for photothermal patterning …


Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison Jul 2014

Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison

Open Access Theses

Shape memory materials are an important class of active materials with a wide range of applications in the aerospace, biomedical, and automobile industries. These materials exhibit the two unique properties of shape memory and superelasticity. Shape memory is the ability to recover its original shape by applying heat after undergoing large deformations. Superelasticity is the ability to undergo large, reversible deformations (up to 10%) that revert back when the load is removed. These special properties originate from a reversible, diffusionless solid-solid phase transformation that occurs between a high temperature austenite phase and a low temperature martensite phase. The development of …


Synthesis And Characterization Of Crystalline Iron Nanoparticles From Zerovalent Iron Sandwich Complexes, Anh Tue Nguyen Jul 2014

Synthesis And Characterization Of Crystalline Iron Nanoparticles From Zerovalent Iron Sandwich Complexes, Anh Tue Nguyen

Open Access Theses

In this project we present a systematic study on the synthesis of crystalline iron nanocubes by thermal decomposition of an iron sandwich complex, ( π-C5H5)Fe0(π-C 6H7), in the presence of oleylamine and oleylamine.HCl as surfactants and n-decane as a solvent. The presence of oleylamine.HCl is essential for the reproducible formation of crystalline iron cores.^ Reaction parameters such as temperature, surfactant concentration, effect of counterion, and organoiron reagent structure were investigated in order to obtain iron nanoparticles with uniform size and shape. The nanoparticles, which were characterized by …


Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun Apr 2014

Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun

Open Access Theses

Synthesis of nanorods and nanowires is becoming more and more important due to interest in them in a wide range of disciplines. The genetically engineered tobacco mosaic virus (TMV1Cys) provides a template for synthesis of uniform metal nanorods at mild operating conditions and without the use of any expensive technology compared to conventional synthetic methods. The discovery of the hydrothermal synthetic scheme has allowed the production of higher quality nanorods on the TMV template. However, the mechanism for reduction and growth in this process is still not understood. In this paper, the mechanism of synthesis for producing uniform, controllable palladium …


Particle Deposition On Superhydrophobic Surfaces By Sessile Droplet Evaporation, Mercy G. Dicuangco Apr 2014

Particle Deposition On Superhydrophobic Surfaces By Sessile Droplet Evaporation, Mercy G. Dicuangco

Open Access Theses

Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is …


The Development Of 6.7% Efficient Copper Zinc Indium Selenide Devices From Copper Zinc Indium Sulfide Nanocrystal Inks, Brian Kemp Graeser Apr 2014

The Development Of 6.7% Efficient Copper Zinc Indium Selenide Devices From Copper Zinc Indium Sulfide Nanocrystal Inks, Brian Kemp Graeser

Open Access Theses

As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2 )0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2 )0.5 (Zn(S,Se)) 0.5 layer with micron size grains. Due to the large amount of zinc in the film, the sintered grains exhibit the zinc blende structure instead …


Controlling Protein Release Using Biodegradable Microparticles, Benjamin Patrick Kline Apr 2014

Controlling Protein Release Using Biodegradable Microparticles, Benjamin Patrick Kline

Open Access Theses

Research in the field of protein therapeutics has exploded over the past decade and continues to grow in both academia and in industry. Protein drugs have advantages of being highly specific and highly active making them coveted targets for high profile disease states like cancer and multiple sclerosis. Unfortunately, their many advantages are complemented by their obstacles. Because proteins are highly active and highly specific, the window between efficacy and toxicity is very narrow and drug development can be long and arduous. In addition, protein activity is dependent on its specific folding conformation that is easily disrupted by a variety …