Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Discipline
Institution
Keyword
Publication Year
Publication

Articles 811 - 840 of 843

Full-Text Articles in Nanoscience and Nanotechnology

Providing A Theoretical Basis For Nanotoxicity Risk Analysis Departing From Traditional Physiologically-Based Pharmacokinetic (Pbpk) Modeling, Dirk P. Yamamoto Sep 2010

Providing A Theoretical Basis For Nanotoxicity Risk Analysis Departing From Traditional Physiologically-Based Pharmacokinetic (Pbpk) Modeling, Dirk P. Yamamoto

Theses and Dissertations

The same novel properties of engineered nanoparticles that make them attractive may also present unique exposure risks. But, the traditional physiologically-based pharmacokinetic (PBPK) modeling assumption of instantaneous equilibration likely does not apply to nanoparticles. This simulation-based research begins with development of a model that includes diffusion, active transport, and carrier mediated transport. An eigenvalue analysis methodology was developed to examine model behavior to focus future research. Simulations using the physicochemical properties of size, shape, surface coating, and surface charge were performed and an equation was determined which estimates area under the curve for arterial blood concentration, which is a surrogate ...


Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng Aug 2010

Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng

Masters Theses

Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).

The function of the embedding media in describing the properties of wood cells is poorly ...


Macrophages Loaded With Gold Nanoshells For Photothermal Ablation Of Glioma: An In Vitro Model, Amani Riad Makkouk Aug 2010

Macrophages Loaded With Gold Nanoshells For Photothermal Ablation Of Glioma: An In Vitro Model, Amani Riad Makkouk

UNLV Theses, Dissertations, Professional Papers, and Capstones

The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation ...


Fabrication, Characterization And Simulation Of Non-Lithographic Nanostructures And Their Potential Applications, Neelanjan Bhattacharya Aug 2010

Fabrication, Characterization And Simulation Of Non-Lithographic Nanostructures And Their Potential Applications, Neelanjan Bhattacharya

UNLV Theses, Dissertations, Professional Papers, and Capstones

The dissertation describes the formation of porous silicon through the pores of porous alumina on a silicon substrate. Porous silicon, by itself, is inherently a non-uniform material that has non-uniform optical and electronic properties. In addition, it is also mechanically fragile material requiring careful material handling. The porous silicon fabricated through the nanosized pores of porous alumina are expected to mitigate these problems, thereby enhancing commercial viability of the device. The porous silicon as well the porous alumina have been synthesized through anodisation for various parameters and also various types of anodizing electrolytes. The porous silicon, so obtained have been ...


The Characterization And Analysis Of In-Vitro And Elevated Temperature Repassivation Of Ti-6al-4v Via Afm Techniques, Aaron J. Guerrero Jun 2010

The Characterization And Analysis Of In-Vitro And Elevated Temperature Repassivation Of Ti-6al-4v Via Afm Techniques, Aaron J. Guerrero

Master's Theses and Project Reports

ABSTRACT

The Characterization and Analysis of In-vitro and Elevated Temperature Repassivation of

Ti-6Al-4V via AFM Techniques

Aaron J Guerrero

Research in the corrosion of orthopaedic implants is a growing research field where implants have been known to show adverse effects in patients who have encountered the unfortunate dissolution of their implants due to corrosion. Once corrosion begins within the body, many adverse biological reactions can occur such as late on-set infections resulting in severe health complications. The focus of this research is specifically related to the problem of late on-set infections caused by localized corrosion of orthopaedic implants. In medical ...


Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu Jun 2010

Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu

Master's Theses and Project Reports

Gallium nitride (GaN) light emitting diodes (LED) embody a large field of research that aims to replace inefficient, conventional light sources with LEDs that have lower power, higher luminosity, and longer lifetime. This thesis presents an international collaboration effort between the State Key Laboratory for Mesoscopic Physics in Peking University (PKU) of Beijing, China and the Electrical Engineering Department of California Polytechnic State University, San Luis Obispo. Over the course of 2 years, Cal Poly’s side has simulated GaN LEDs within the pure blue wavelength spectrum (460nm), focusing specifically on the effects of reflection gratings, transmission gratings, top and ...


The Applications And Limitations Of Printable Batteries, Matthew Delmanowski Jun 2010

The Applications And Limitations Of Printable Batteries, Matthew Delmanowski

Graphic Communication

This study focuses on the potential applications for printed batteries and how they could affect the printing industry. It also analyzes the main problems associated with manufacturing this technology and what needs to be done to overcome these issues. To find the answers to these questions, two methods of research were used. The first was through the elite and specialized interviewing of Dr. Scott Williams of Rochester Institute of Technology and Professor Nancy Cullins from Cal Poly. The second form of research was a common, yet useful, method called secondary research. This entailed looking at recent written research papers about ...


Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong May 2010

Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong

Doctoral Dissertations

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.

This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities ...


Analysis Of Conjugated Polymer Nanotubules Formed By Template Wetting Nanofabrication, Steven D. Bearden Jr. Apr 2010

Analysis Of Conjugated Polymer Nanotubules Formed By Template Wetting Nanofabrication, Steven D. Bearden Jr.

Doctoral Dissertations

Semiconducting and optoelectric conjugated polymers have potential in micro and nano-electronic applications. Their widely tunable physical conformations and orientations make these polymers ideal material for engineering small scale devices. The polymers have been incorporated into several electronic devices including light-emitting diodes, solar cells, and field-effect transistors. Widespread adoption of these materials will not be a reality until the issues of poor device performance, short lifespans, and device degradation are resolved.

Nanostructures have been demonstrated to have improvements in molecular ordering and electronic transport. In the work presented here, tubular nanostructures of conjugated polymers fabricated by the template wetting nanofabrication process ...


Galvanic Porous Silicon: Processing And Characterization For Nanoenergetics, Collin R. Becker Jan 2010

Galvanic Porous Silicon: Processing And Characterization For Nanoenergetics, Collin R. Becker

Mechanical Engineering Graduate Theses & Dissertations

Porous silicon (PS) is a silicon (Si) based material composed of pores with diameters ranging from several nanometers to several micrometers. Typically PS is formed by electrochemically etching a Si wafer in a hydrofluoric acid (HF) based electrolyte. This route requires a custom built etch cell and a power supply and is difficult to integrate with the batch processing techniques of conventional Microsystems fabrication. In the first part of this work, a galvanic etching approach is used to fabricate PS in which neither a power supply nor custom etch cell are required. Galvanic etching methods are developed to fabricate thick ...


Atomic Layer Deposition Enabled Interconnect And Packaging Technologies For As-Grown Nanowire Devices, Jen-Hau Cheng Jan 2010

Atomic Layer Deposition Enabled Interconnect And Packaging Technologies For As-Grown Nanowire Devices, Jen-Hau Cheng

Mechanical Engineering Graduate Theses & Dissertations

Nanowires (NWs) have attracted considerable interests in many applications due to their small size, extremely high surface-to-volume ratio, and superior material properties. They are promising material candidates as fundamental building blocks for future electronic, optoelectronic, energy, sensor, and biomedical applications. The majority of research activities have focused on the synthesis of NWs. With the advent of high-performance NWs, interconnect and packaging of NWs are becoming increasingly important for device applications. Vertical NW array devices, compared with horizontal NW configurations, are of great importance for achieving ultra-high integration density at the device level without the need of additional assembly and rearrangement ...


Nanomaterial Characterization Using Actuated Microelectromechanical Testing Stages, Joseph James Brown Jan 2010

Nanomaterial Characterization Using Actuated Microelectromechanical Testing Stages, Joseph James Brown

Mechanical Engineering Graduate Theses & Dissertations

In this work, microfabricated mechanical systems have been created in a variety of forms and operated to perform nanomaterials characterization tests. A simplified integrated test system was developed and used to collect data from a range of materials including gallium nitride nanowires. A new force estimation approach was developed which enables estimation of the forces provided by electrothermal microelectromechanical (MEMS) actuators, and with knowledge of a material specimen cross-section area, an estimation of the engineering stress within the nanomaterial specimen.

In an expanded design, a MEMS micromanipulator probe interfaced with a removable specimen holder, also known as a test coupon ...


Nanoscale Functionalization And Characterization Of Surfaces With Hydrogel Patterns And Biomolecules, Hariharasudhan Chirra Dinakar Jan 2010

Nanoscale Functionalization And Characterization Of Surfaces With Hydrogel Patterns And Biomolecules, Hariharasudhan Chirra Dinakar

University of Kentucky Doctoral Dissertations

The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted.

Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the ...


Synthetic Levers Enabling Control Of Phase, Size And Morphology In Transition Metal Phosphide Nanoparticles (Fe, Ni), Elayaraja Muthuswamy Jan 2010

Synthetic Levers Enabling Control Of Phase, Size And Morphology In Transition Metal Phosphide Nanoparticles (Fe, Ni), Elayaraja Muthuswamy

Wayne State University Dissertations

ABSTRACT

SYNTHETIC LEVERS ENABLING CONTROL OF PHASE, SIZE AND MORPHOLOGY IN TRANSITION METAL PHOSPHIDE NANOPARTICLES (FE, NI)

by

ELAYARAJA MUTHUSWAMY

May 2011

Advisor:Dr. Stephanie L. Brock

Major: Chemistry

Degree: Doctor of Philosophy

This dissertation study focuses on (1) development of a synthetic strategy to control phase in nanoscale iron phosphides; (2) extension of the developed phase control strategy to the nanoscale nickel phosphide system with simultaneous control on size and morphology and (3) illustration of the enhanced reactivity of nanoscale oxide systems.

A synthetic strategy to control phase in nanoscale iron phosphides was developed to prepare phase-pure samples of ...


Tungsten Oxide (Wo3) Thin Films For H2s Sensor Application In Energy Systems, Satya Kiran Gullapalli Jan 2010

Tungsten Oxide (Wo3) Thin Films For H2s Sensor Application In Energy Systems, Satya Kiran Gullapalli

Open Access Theses & Dissertations

The sulfur containing emissions in coal gasification systems to produce energy are devastating and hostile to the requirements of clean, environmental friendly, efficient, and economical energy. Therefore, hydrogen sulfide (H2S) emissions in coal gasification plants must be monitored, controlled and effectively removed before the syngas is used for energy production. The present research focuses on the development and utilization of tungsten oxide (WO3) thin films and nanostructures for H2S application in the coal gasification systems. As a part of that overall goal, the present work was performed with a specific objective of understanding the effect ...


Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud Jan 2010

Development Of Wide Band Gap Semiconductor Materials For Renewable Energy, S.M. Sarif Masud

Open Access Theses & Dissertations

Several new wide band gap semiconductor nanocomposite photocatalytic materials have been synthesized from HTiNbO5 and HNb3O8 for solar energy conversion. As a source of renewable energy, the materials are being tested to produce hydrogen fuel from water via photolysis. The materials have high surface areas, are macroporous, and have flatband potentials suitable for reducing water to create hydrogen. Under visible or ultra violet light, the materials were found to be very promising as hydrogen evolving photocatalysts. As part of the synthesis of the composites, the catalysts also exhibited excellent catalytic activity under UV light for reducing ionic platinum and gold ...


A New Green Chemistry Method Based On Plant Extracts To Synthesize Gold Nanoparticles, Milka Odemariz Montes Castillo Jan 2010

A New Green Chemistry Method Based On Plant Extracts To Synthesize Gold Nanoparticles, Milka Odemariz Montes Castillo

Open Access Theses & Dissertations

Extraordinary chemical and physical properties exhibited by nanomaterials, as compared to their bulk counterparts, have made the area of nanotechnology a growing realm in the past three decades. It is the nanoscale size (from 1 to 100 nm) and the morphologies of nanomaterials that provide several properties and applications not possible for the same material in the bulk. Magnetic and optical properties, as well as surface reactivity are highly dependent on the size and morphology of the nanomaterial. Diverse nanomaterials are being widely used in molecular diagnostics as well as in medicine, electronic and optical devices. Among the most studied ...


Microstructure And Property Evaluation Of Lifepo4 Thin Films For Application In Microbatteries, Jose Marcos Mares Jan 2010

Microstructure And Property Evaluation Of Lifepo4 Thin Films For Application In Microbatteries, Jose Marcos Mares

Open Access Theses & Dissertations

The shortage of fossil fuels and the requirements to produce clean, environmental friendly, efficient, and economical energy are the principal problems in the context of energy technology for current and future generations. Therefore, advanced energy storage and conversion capabilities with higher capacity and efficiency are desired. Currently, there is an enormous interest in the development of high energy density rechargeable batteries for use in domestic applications, automotive industries and portable electronic applications. The present research focuses on the development of LiFePO4 thin films for solid-state thin-film microbatteries. The present effort was performed with a specific purpose of understanding the effect ...


Supercritical Carbon Dioxide Processing Of Nano - Clays And Polymer/Clay Nanocomposites, Mihai Manitiu Jan 2010

Supercritical Carbon Dioxide Processing Of Nano - Clays And Polymer/Clay Nanocomposites, Mihai Manitiu

Wayne State University Dissertations

Effective dispersion of the fillers in a polymer matrix and improvement of polymer-clay interactions are two key challenges in the field of nanocomposites. A novel processing method that utilizes the unique properties of supercritical carbon dioxide (scCO2) to disperse nano-clay and prepare a series of polymer/clay nanocomposites with enhanced properties was explored.

Significant dispersion was achieved using the scCO2 process with Cloisite 10A without the presence of an organic phase as evident by the absence of the diffraction peak in WAXD and the presence of individual tactoids that lost their parallel registry. The expanded flexible structure of the scCO2 ...


Silver-Polyimide Nanocomposite Films: Single-Stage Synthesis And Analysis Of Metalized Partially-Fluorinated Polyimide Btda/4-Bdaf Prepared From Silver(I) Complexes, Joshua Erold Robert Abelard Jan 2010

Silver-Polyimide Nanocomposite Films: Single-Stage Synthesis And Analysis Of Metalized Partially-Fluorinated Polyimide Btda/4-Bdaf Prepared From Silver(I) Complexes, Joshua Erold Robert Abelard

Dissertations, Theses, and Masters Projects

No abstract provided.


Monitoring Of Immune Cell Response To B Cell Depletion Therapy And Nerve Root Injury Using Spio Enhanced Mri, Daniel L. Thorek Dec 2009

Monitoring Of Immune Cell Response To B Cell Depletion Therapy And Nerve Root Injury Using Spio Enhanced Mri, Daniel L. Thorek

Publicly Accessible Penn Dissertations

Magnetic resonance (MR) is a robust platform for non-invasive, high-resolution anatomical imaging. However, MR imaging lacks the requisite sensitivity and contrast for imaging at the cellular level. This represents a clinical impediment to greater diagnostic accuracy. Recent advances have allowed for the in vivo visualization of populations and even of individual cells using superparamagnetic iron oxide (SPIO) MR contrast agents. These nanoparticles, commonly manifested as a core of a single iron oxide crystal or cluster of crystals coated in a biocompatible shell, function to shorten proton relaxation times. In MR imaging these constructs locally dephase protons, resulting in a decrease ...


Synthesis And Spectroscopic Characterization Of Nanostructured Thermoelectric Materials, Jason Reppert Dec 2009

Synthesis And Spectroscopic Characterization Of Nanostructured Thermoelectric Materials, Jason Reppert

All Dissertations

Bismuth in the bulk form is a semimetal with a rhombohedral structure. It has a small band overlap between the conduction and valence bands and a highly anisotropic electron effective-mass tensor. Thermoelectric materials, in which one of the three dimensions is in the nanometer regime, exhibit unique quantum confinement properties and have generated much interest in recent years. Theoretical investigations have suggested that nanowires with diameters ≤ 10 nm will possess a figure-of-merit ZT > 2. Prior to this study, it has been shown that Bi nanowires with small enough diameters (~10 nm), prepared via the pulsed laser vaporization method, undergo a ...


Inter-Tube Bonding And Defects In Carbon Nanotubes And The Impact On The Transport Properties And Micro-Morphology, Keqin Yang Dec 2009

Inter-Tube Bonding And Defects In Carbon Nanotubes And The Impact On The Transport Properties And Micro-Morphology, Keqin Yang

All Dissertations

The transport properties of the carbon nanotubes (CNTs) are affected by the tube-tube interaction and the defects presented in the system. Inter-tube bonding, formed during spark plasma sintering (SPS) process, lowers the electrical/thermal resistivity at the tube-tube junctions and also causes new scattering mechanisms such as strong electron-phonon coupling (EPC) at low temperature. More evidences have been found by changing the SPS temperature and doping the CNTs to support the electron-phonon coupling is Kohn anomaly (KA) in as-SPSed CNTs. The phonon drag, appearing in thermoelectric power (TEP) of the as-SPSed CNTs at low temperature, can be explained in the ...


Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula May 2009

Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nanoporous anodic aluminum oxide has traditionally been made in one of two ways: "Mild Anodization (MA)" or "Hard Anodization (HA)". The former method produces self-ordered pore structures but it is slow and only works for a narrow range of processing conditions; the latter method, which is widely used in the aluminum industry, is faster but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the MA and HA processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic ...


Magnetic Sensors For Biodetection, Pranjali Vineet Sneha Deshpande May 2009

Magnetic Sensors For Biodetection, Pranjali Vineet Sneha Deshpande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of thesis is to design magnetic sensor for detection of nanoparticles. Recently integrating the standard laboratory techniques into integrated system on chip is growing attention. Recent development is to combine magnetic markers and magnetoresistive sensors together in magnetic chip. In this thesis two magnetoresistive sensors were studied and designed.

By applying magnetic fields, magnetic nanoparticles can be manipulated on-chip, which can be utilized to pull the molecules to specific binding sites or to test the binding strength and distinguish between specifically and non-specifically bound molecules

Magnetoresistive sensors are compatible with the semiconductor industry which provides electronic signal directly ...


Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith Jan 2009

Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith

Master's Theses and Project Reports

Understanding the mechanisms that control the mechanical behavior of microscale actuators is necessary to design an actuator that responds to an applied actuation force with the desired behavior. Micro actuators which employ a diaphragm supported by torsional hinges which deform during actuation are used in many applications where device stability and reliability are critical. The material response to the stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. A fully recoverable non-linear viscoelastic response has been observed in electrostatically driven micro actuators employing torsional hinges of silicon covered with thin metal films ...


Substituent Effect On The Electronic And Assembling Properties Of Asymmetric Phenazine Derivatives, Bin Cao Jan 2009

Substituent Effect On The Electronic And Assembling Properties Of Asymmetric Phenazine Derivatives, Bin Cao

UNLV Theses, Dissertations, Professional Papers, and Capstones

Currently, one-dimensional (1-D) nanostructures have drawn much interest because of their potential applications for nanoscale optoelectronic devices. Self-assembly (SA) based on π-conjugated systems through various intermolecular interactions has been widely used to produce 1-D nanostructure. Morphology of the assembled structures can be modified by incorporating substituents, which provide additional secondary interactions. Meanwhile, those substituents also influence the electronic properties of the molecules. Previous studies have made little effort to systematically study subsistent effects on both electronic and SA properties.

The primary objective of this research is to generate controllable 1-D structures through SA, and to provide a fundamental understanding of ...


Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann Jan 2009

Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the main barriers to commercialization of polymer electrolyte membrane fuel cells systems is cost, which is largely due to the need of platinum (Pt)-containing catalysts. In this thesis we investigate bimetallic systems consisting of a base metal (copper) and a noble metal (palladium) that, as an alloy on the nanoscale, mimic the electronic properties that make Pt desirable as a catalyst.

We present a detailed investigation of the electronic structure of carbon-supported Pd/Cu nanoparticle catalysts, model bilayer thin film systems, alloys, and various metal reference samples. We have investigated the valence band structure of the catalysts ...


Metal Induced Crystallization Of Silicon Thin Films, Sandeep Kumar Raju Sangaraju Jan 2009

Metal Induced Crystallization Of Silicon Thin Films, Sandeep Kumar Raju Sangaraju

UNLV Theses, Dissertations, Professional Papers, and Capstones

Low temperature crystallization of thin film silicon is important for many industrial applications including flat panel displays and silicon thin film solar cells. Unfortunately this remains a major challenge since crystallization temperature of silicon is above 1,000 degrees Celsius, thus limiting to substrates that can tolerate high temperatures. The inability to deposit crystalline thin films on glass substrates is the reason why flat panel display industry uses amorphous silicon for LCD active matrix displays. Thus the ability to deposit crystallized thin film silicon at low temperatures will have significant impact on thin film silicon applications. It has been observed ...


Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Madhukar B. Kolli Jan 2008

Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Madhukar B. Kolli

Theses, Dissertations and Capstones

The exploration of biomolecular motors in nanotechnological applications has generated much interest in the scientific community. Although the recent progress has been very promising, several requirements have yet to be fulfilled in order for motor proteins to be useful in nanotechnological applications. Here, we present a simple method for patterning myosin II on a microstructured surface. Our findings indicate that UV/ozone treatment can be used to alter the hydrophobicity of trimethyl-chloro-silane (TMCS) coated glass surfaces, to alter protein binding, and effectively produce localized motor activity. Taken together, these data suggest that photoreactive patterning may be useful for the selective ...