Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Seismic Characterization Of Select Engineered Nanoparticles In Essentially Saturated Glass Beads, Mohamed Nihad Rajabdeen Aug 2011

Seismic Characterization Of Select Engineered Nanoparticles In Essentially Saturated Glass Beads, Mohamed Nihad Rajabdeen

UNLV Theses, Dissertations, Professional Papers, and Capstones

A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline signatures. Then the seismic responses in the presence of engineered nanoparticles of various concentrations dispersed in the pore fluid of the specimen chamber were studied to observe variances from baseline.

The testing apparatus incorporates piezoceramic bender elements to actuate and receive seismic body waves through a cylindrical column filled with glass beads and back-saturated at ambient pressure with liquid. The system …


Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah Jul 2011

Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah

Electrical & Computer Engineering Theses & Dissertations

The ultrafast fast phenomena that take place following the application of a 120 fs laser pulse on 20 nm antimony thin films and 40 nm nanoparticles were studied using time-resolved electron diffraction. Samples are prepared by thermal evaporation, at small thickness (< 10 nm) antimony nanoparticles form while at larger thicknesses we get continuous thin films.

The samples are annealed and studied by static heating to determine their Debye temperatures, which were considerably less than the standard value. The thermal expansion under static heating also yielded the expansion coefficient of the sample material. Nanoparticle samples gave a very accurate thermal expansion coefficient (11 × 10-6 K-1).

Ultrafast time resolved electron diffraction …