Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Theses and Dissertations--Chemical and Materials Engineering

Discipline
Keyword
Publication Year

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to ...


Nanoharvesting And Delivery Of Bioactive Materials Using Engineered Silica Nanoparticles, Md Arif Khan Jan 2019

Nanoharvesting And Delivery Of Bioactive Materials Using Engineered Silica Nanoparticles, Md Arif Khan

Theses and Dissertations--Chemical and Materials Engineering

Mesoporous silica nanoparticles (MSNPs) possess large surface areas and ample pore space that can be readily modified with specific functional groups for targeted binding of bioactive materials to be transported through cellular barriers. Engineered silica nanoparticles (ESNP) have been used extensively to deliver bio-active materials to target intracellular sites, including as non-viral vectors for nucleic acid (DNA/RNA) delivery such as for siRNA induced interference. The reverse process guided by the same principles is called “nanoharvesting”, where valuable biomolecules are carried out and separated from living and functioning organisms using nano-carriers. This dissertation focuses on ESNP design principles for both ...


Utilization Of Bio-Renewable Lignin In Building High Capacity, Durable, And Low-Cost Silicon-Based Negative Electrodes For Lithium-Ion Batteries, Tao Chen Jan 2017

Utilization Of Bio-Renewable Lignin In Building High Capacity, Durable, And Low-Cost Silicon-Based Negative Electrodes For Lithium-Ion Batteries, Tao Chen

Theses and Dissertations--Chemical and Materials Engineering

Silicon-based electrodes are the most promising negative electrodes for the next generation high capacity lithium ion batteries (LIB) as silicon provides a theoretical capacity of 3579 mAh g-1, more than 10 times higher than that of the state-of-the-art graphite negative electrodes. However, silicon-based electrodes suffer from poor cycle life due to large volume expansion and contraction during lithiation/delithiation. In order to improve the electrochemical performance a number of strategies have been employed, such as dispersion of silicon in active/inactive matrixes, devising of novel nanostructures, and various coatings for protection. Amongst these strategies, silicon-carbon coating based composites are ...


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra Jan 2017

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these ...


Peptide-Functionalized Magnetic Nanoparticles For Cancer Therapy Applications, Anastasia K. Hauser Jan 2016

Peptide-Functionalized Magnetic Nanoparticles For Cancer Therapy Applications, Anastasia K. Hauser

Theses and Dissertations--Chemical and Materials Engineering

Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix ...


Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure Jan 2016

Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure

Theses and Dissertations--Chemical and Materials Engineering

This dissertation addresses the synthesis mechanism of mesoporous titania thin films with 2D Hexagonal Close Packed (HCP) cylindrical nanopores by an evaporation-induced self-assembly (EISA) method with Pluronic surfactants P123 and F127 as structure directing agents, and their applications in photovoltaics and lithium ion batteries. To provide orthogonal alignment of the pores, surface modification of substrates with crosslinked surfactant has been used to provide a chemically neutral surface. GISAXS studies show not only that aging at 4°C facilitates ordered mesostructure development, but also that aging at this temperature helps to provide orthogonal orientation of the cylindrical micelles which assemble into ...


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated ...


Cnt Membrane Platforms For Transdermal Drug Delivery And Aptamer Modulated Transport, Tao Chen Jan 2014

Cnt Membrane Platforms For Transdermal Drug Delivery And Aptamer Modulated Transport, Tao Chen

Theses and Dissertations--Chemical and Materials Engineering

CNT membrane platforms are biomimetic polymeric membranes imbedded with carbon nanotubes which show fast fluid flow, electric conductivity, and the ability to be grafted with chemistry. A novel micro-dialysis probe nicotine concentration sampling technique was proposed and proved in vitro, which could greatly improve the efficiency and accuracy of future animal transdermal studies. To enhance the scope of transdermal drug delivery which was limited to passive diffusion of small, potent lipophilic drugs, a wire mesh lateral electroporation design was also proposed which could periodically disrupt the skin barrier and enhance drug flux.

It was shown that AMP binding aptamer at ...


Influence Of Surface Modification On Properties And Applications Of Complex Engineered Nanoparticles, Binghui Wang Jan 2013

Influence Of Surface Modification On Properties And Applications Of Complex Engineered Nanoparticles, Binghui Wang

Theses and Dissertations--Chemical and Materials Engineering

Complex engineered nanoparticles (CENPs) are being used on various applications. Their properties are different from those of neat nanoparticles. The dissertation explores these differences from four aspects: 1) Modify carbon nanomaterials’ inert surfaces and investigate the effect on thermal and rheological behavior of their dispersions; 2) Generate self-assembly bi-layer structure of oxide nanoparticles via surface modification; 3) Study interaction between lysozyme and different surface-charged ceria nanoparticles; 4) Investigate the biodistribution and transformations of CENPs in biological media.

An environment-friendly surface modification was developed to modify surfaces of carbon nanomaterials for increasing their affinity to non-polar fluid. It can offset formation ...


Novel Design Of Functionalized Carbon Nanotube Electrodes And Membranes For Fuel Cells And Energy Storage, Xin Su Jan 2012

Novel Design Of Functionalized Carbon Nanotube Electrodes And Membranes For Fuel Cells And Energy Storage, Xin Su

Theses and Dissertations--Chemical and Materials Engineering

A novel electrochemical method to generate nm-scale bubbles at the tips of CNTs can temporarily block the membrane. A 92% blocking efficiency is achieved when the bubbles are stabilized in 30-60 nm diameter „wells‟ at the tips of CNTs. This well is formed by the electrochemical oxidation of the conductive CNTs partially into the polymer matrix of the membrane. Meanwhile, the nanoscale bubbles can be removed with 0.004 atm pressure to recover the transport through the CNT membrane. The CNT membrane with nanoscale bubble valve system was used to demonstrate electrochemical energy storage.

Uniform ultrathin Pt films were electrodeposited ...


Nanoparticle Additives For Multiphase Systems: Synthesis, Formulation And Characterization, Vinod Kanniah Jan 2012

Nanoparticle Additives For Multiphase Systems: Synthesis, Formulation And Characterization, Vinod Kanniah

Theses and Dissertations--Chemical and Materials Engineering

Study on nanoparticle additives in multiphase systems (liquid, polymer) are of immense interest in developing new product applications. Critical challenges for nanoparticle additives include their synthesis, formulation and characterization. These challenges are addressed in three application areas: nanofluids for engine lubrication, ultrathin nanocomposites for optical devices, and nanoparticle size distribution characterization.

Nanoparticle additives in oligomer mixtures can be used to develop extended temperature range motor oils. A model system includes poly(α-olefin) based oligomers with a modest fraction of poly(dimethylsiloxane) oligomers along with graphite as nanoparticle additive. Partition coefficients of each oligomer are determined since the oligomer mixture phase ...


Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu Jan 2012

Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu

Theses and Dissertations--Chemical and Materials Engineering

Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.

The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.

For indentation of a piezoelectric half space, a three-dimensional finite element ...