Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles Aug 2016

Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles

Open Access Theses

In this thesis, the coherent and incoherent transport simulation capabilities of the multipurpose nanodevice simulation tool NEMO5 are presented and applied on transport in tunneling field-effect transistors (TFET). A gentle introduction is given to the non-equilibrium Green's function theory. The comparison with experimental resistivity data confirms the validity of the electron-phonon scattering models. Common pitfalls of numerical implementations such as current conservation, energy mesh resolution, and recursive Green's function stability and the applicability of common approximations of scattering self-energies are discussed. The impact of phonon-assisted tunneling on the performance of TFETs is exemplified with a concrete Si nanowire device. The …


Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton Jan 2013

Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton

Open Access Theses

Many approaches to quantum computing use spatially confined qubits in the presence of dynamic fields to perform computation. These approaches are contrasted with proposals using mobile qubits in the presence of static fields. In this thesis, steady state quantum computing using mobile electrons is explored using numerical modeling. Firstly, a foundational introduction to the case of spatially confined qubits embodied via quantum dots is provided. A collection of universal gates implemented with dynamic fields is described using simulations. These gates are combined to implement a five-qubit Grover search to provide further insight on the time-dependent field approach. Secondly, the quantum …