Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Nanoscience and Nanotechnology

Liquid Metal Particle Popping: Nanoscale To Macroscale, Trevor R. Lear Dec 2016

Liquid Metal Particle Popping: Nanoscale To Macroscale, Trevor R. Lear

Open Access Theses

Liquid metal nanoparticles can be used to produce stretchable electronic devices. Understanding the mechanical properties of liquid metal nanoparticles is crucial to optimizing their use in various applications, especially printing of flexible, stretchable electronics. Smaller nanoparticles are desired for high-resolution printing and compatibility with existing scalable manufacturing methods; however, they contain less liquid metal and are more difficult to rupture than larger particles, making them less desirable for post-processing functionality. This study investigates the mechanics of liquid metal particle rupture as a function of particle size. We employ compression of particle films to characterize the composition of the particle core ...


Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles Aug 2016

Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles

Open Access Theses

In this thesis, the coherent and incoherent transport simulation capabilities of the multipurpose nanodevice simulation tool NEMO5 are presented and applied on transport in tunneling field-effect transistors (TFET). A gentle introduction is given to the non-equilibrium Green's function theory. The comparison with experimental resistivity data confirms the validity of the electron-phonon scattering models. Common pitfalls of numerical implementations such as current conservation, energy mesh resolution, and recursive Green's function stability and the applicability of common approximations of scattering self-energies are discussed. The impact of phonon-assisted tunneling on the performance of TFETs is exemplified with a concrete Si nanowire ...


Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn Apr 2016

Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn

Open Access Theses

Molecular dynamics (MD) simulations provide a useful and simple means of calculating the nanoscale thermal properties of materials, which requires special analysis since the thermal properties of materials change when their dimensions reach the nanoscale. In this research, MD is used to investigate the nanoscale phonon thermal transport of materials that are attracting much interest in the areas of materials science and nuclear physics. In order to evaluate two distinct methods of calculating the thermal conductivity of materials using MD, the simulation methods are first applied to Si. Once an understanding of each simulation method is established, they are then ...


Preparation Of Bismuth Telluride Based Thermoelectric Nanomaterials Via Low-Energy Ball Milling And Their Property Characterizations, Christopher Robinson Apr 2015

Preparation Of Bismuth Telluride Based Thermoelectric Nanomaterials Via Low-Energy Ball Milling And Their Property Characterizations, Christopher Robinson

Open Access Theses

Thermoelectric materials are able to convert energy between heat and electricity with no moving parts, making them very appealing for power generation purposes. This is particularly appealing since many forms of energy generation lose energy to waste heat. The Livermore National Laboratory estimates that up to 55% of the energy created in traditional power plants is lost through heat generation [1]. As greenhouse gas emissions become a more important issue, large sources of waste like this will need to be harnessed. ^ Adoption of these materials has been limited due to the cost and efficiency of current technology. Bismuth telluride based ...


Modeling And Analysis Of A Resonant Nanosystem, Scott L. Calvert Apr 2015

Modeling And Analysis Of A Resonant Nanosystem, Scott L. Calvert

Open Access Theses

The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the ...


Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison Jul 2014

Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison

Open Access Theses

Shape memory materials are an important class of active materials with a wide range of applications in the aerospace, biomedical, and automobile industries. These materials exhibit the two unique properties of shape memory and superelasticity. Shape memory is the ability to recover its original shape by applying heat after undergoing large deformations. Superelasticity is the ability to undergo large, reversible deformations (up to 10%) that revert back when the load is removed. These special properties originate from a reversible, diffusionless solid-solid phase transformation that occurs between a high temperature austenite phase and a low temperature martensite phase. The development of ...


Optical Direct-Write Nanolithography Based On Self-Assembled Resist, Meghana Akella Jul 2014

Optical Direct-Write Nanolithography Based On Self-Assembled Resist, Meghana Akella

Open Access Theses

Holographic display is being developed for next generation mobile phones. However, manufacturing of miniature gratings for the holographic projectors cost a few thousand dollars today, not making the concept practical for commercial purposes. In this thesis, we discuss the feasibility of self-assembled nanoparticles to manufacture holographic gratings cost-effectively and at the nanoscale. Using our approach, the gratings can be manufactured at the scale of 20nm and the cost per chip is expected to cost a few dollars.^ In this thesis, a hydrophobic SAM was used to modify the surface of silicon. Direct-write UV laser lithography was used for photothermal patterning ...


Synthesis And Characterization Of Crystalline Iron Nanoparticles From Zerovalent Iron Sandwich Complexes, Anh Tue Nguyen Jul 2014

Synthesis And Characterization Of Crystalline Iron Nanoparticles From Zerovalent Iron Sandwich Complexes, Anh Tue Nguyen

Open Access Theses

In this project we present a systematic study on the synthesis of crystalline iron nanocubes by thermal decomposition of an iron sandwich complex, ( π-C5H5)Fe0(π-C 6H7), in the presence of oleylamine and oleylamine.HCl as surfactants and n-decane as a solvent. The presence of oleylamine.HCl is essential for the reproducible formation of crystalline iron cores.^ Reaction parameters such as temperature, surfactant concentration, effect of counterion, and organoiron reagent structure were investigated in order to obtain iron nanoparticles with uniform size and shape. The nanoparticles, which were characterized by TEM ...


Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun Apr 2014

Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun

Open Access Theses

Synthesis of nanorods and nanowires is becoming more and more important due to interest in them in a wide range of disciplines. The genetically engineered tobacco mosaic virus (TMV1Cys) provides a template for synthesis of uniform metal nanorods at mild operating conditions and without the use of any expensive technology compared to conventional synthetic methods. The discovery of the hydrothermal synthetic scheme has allowed the production of higher quality nanorods on the TMV template. However, the mechanism for reduction and growth in this process is still not understood. In this paper, the mechanism of synthesis for producing uniform, controllable palladium ...


Controlling Protein Release Using Biodegradable Microparticles, Benjamin Patrick Kline Apr 2014

Controlling Protein Release Using Biodegradable Microparticles, Benjamin Patrick Kline

Open Access Theses

Research in the field of protein therapeutics has exploded over the past decade and continues to grow in both academia and in industry. Protein drugs have advantages of being highly specific and highly active making them coveted targets for high profile disease states like cancer and multiple sclerosis. Unfortunately, their many advantages are complemented by their obstacles. Because proteins are highly active and highly specific, the window between efficacy and toxicity is very narrow and drug development can be long and arduous. In addition, protein activity is dependent on its specific folding conformation that is easily disrupted by a variety ...


The Development Of 6.7% Efficient Copper Zinc Indium Selenide Devices From Copper Zinc Indium Sulfide Nanocrystal Inks, Brian Kemp Graeser Apr 2014

The Development Of 6.7% Efficient Copper Zinc Indium Selenide Devices From Copper Zinc Indium Sulfide Nanocrystal Inks, Brian Kemp Graeser

Open Access Theses

As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2 )0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2 )0.5 (Zn(S,Se)) 0.5 layer with micron size grains. Due to the ...


Particle Deposition On Superhydrophobic Surfaces By Sessile Droplet Evaporation, Mercy G. Dicuangco Apr 2014

Particle Deposition On Superhydrophobic Surfaces By Sessile Droplet Evaporation, Mercy G. Dicuangco

Open Access Theses

Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is ...


Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton Jan 2013

Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton

Open Access Theses

Many approaches to quantum computing use spatially confined qubits in the presence of dynamic fields to perform computation. These approaches are contrasted with proposals using mobile qubits in the presence of static fields. In this thesis, steady state quantum computing using mobile electrons is explored using numerical modeling. Firstly, a foundational introduction to the case of spatially confined qubits embodied via quantum dots is provided. A collection of universal gates implemented with dynamic fields is described using simulations. These gates are combined to implement a five-qubit Grover search to provide further insight on the time-dependent field approach. Secondly, the quantum ...


Accurate Prediction Of Spectral Phonon Relaxation Time And Thermal Conductivity Of Intrinsic And Perturbed Materials, Tianli Feng Jan 2013

Accurate Prediction Of Spectral Phonon Relaxation Time And Thermal Conductivity Of Intrinsic And Perturbed Materials, Tianli Feng

Open Access Theses

The prediction of spectral phonon relaxation time, mean-free-path, and thermal conductivity can provide significant insights into the thermal conductivity of bulk and nanomaterials, which are important for thermal management and thermoelectric applications. We perform frequency-domain normal mode analysis (NMA) on pure bulk argon and pure bulk germanium. Spectral phonon properties, including the phonon dispersion, relaxation time, mean free path, and thermal conductivity of argon and germanium at different temperatures have been calculated. We find the dependence of phonon relaxation time τ on frequency ω and temperature T vary from ~ω-1.3 to ~ω-1.8 and ~T-0.8 ...