Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Nanoscale Science & Engineering (discontinued with class year 2014)

Scanning electron microscopes

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Modeling Secondary Electron Trajectories In Scanning Electron Microscopes, Kevin Mcnamara, Joshua Miller May 2016

Modeling Secondary Electron Trajectories In Scanning Electron Microscopes, Kevin Mcnamara, Joshua Miller

Nanoscale Science & Engineering (discontinued with class year 2014)

The efficiency of secondary electron collection by a scanning electron microscope detector is not generally known, particularly as the electric field on the detector is varied. It is often assumed that the detector collects almost all of the secondary electrons emitted from the sample. This works seeks to better understand the mechanism of secondary electron collection by the detector in order to optimize collection efficiency. The benefit of collecting more secondary electrons is the enhancement of the signal-to-noise ratio, which means better quality images can be obtained, allowing us to better understand the relationship between secondary electron images and the ...


Modeling Secondary Electron Trajectories In Scanning Electron Microscopes, Joshua Miller, Kevin Mcnamara May 2016

Modeling Secondary Electron Trajectories In Scanning Electron Microscopes, Joshua Miller, Kevin Mcnamara

Nanoscale Science & Engineering (discontinued with class year 2014)

The efficiency of secondary electron collection by a scanning electron microscope detector is not generally known, particularly as the electric field on the detector is varied. It is often assumed that the detector collects almost all of the secondary electrons emitted from the sample. This works seeks to better understand the mechanism of secondary electron collection by the detector in order to optimize collection efficiency. The benefit of collecting more secondary electrons is the enhancement of the signal-to-noise ratio, which means better quality images can be obtained, allowing us to better understand the relationship between secondary electron images and the ...