Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Dissertations, Master's Theses and Master's Reports

Discipline
Keyword
Publication Year

Articles 1 - 13 of 13

Full-Text Articles in Nanoscience and Nanotechnology

Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil Jan 2022

Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil

Dissertations, Master's Theses and Master's Reports

High-performance polymers are extensively used in the aerospace and aeronautics industries due to their low density, high specific strength, and high specific stiffness. These properties along with better infiltration with reinforcements [carbon nanotubes (CNTs), glass, etc.] capability make them an excellent candidate to fabricate Polymer Matrix Composites (PMCs) tailored for specific applications. The applications range from products used daily to deep space exploration. These materials are subjected to varying temperatures and pressures during fabrication and in service. Therefore, the evolution of their intrinsic properties needs to be studied and their ability to sustain extreme environmental conditions in outer space needs …


Molecular Modeling Of High-Performance Thermoset Polymer Matrix Composites For Aerospace Applications, Prathamesh P. Deshpande Jan 2022

Molecular Modeling Of High-Performance Thermoset Polymer Matrix Composites For Aerospace Applications, Prathamesh P. Deshpande

Dissertations, Master's Theses and Master's Reports

The global efforts from major space agencies to transport humans to Mars will require a novel lightweight and ultra-high strength material for the spacecraft structure. Three decades of research with the carbon nanotubes (CNTs) have proved that the material can be an ideal candidate for the composite reinforcement if certain shortcomings are overcome. Also, the rapid development of the polymer resin industry has introduced a wide range of high-performance resins that show high compatibility with the graphitic surface of the CNTs. This research explores the computational design of these materials and evaluates their efficacy as the next generation of aerospace …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


3d Printing Of Iron Oxide Incorporated Polydimethylsiloxane Soft Magnetic Actuator, Rasoul Bayaniahangar Jan 2020

3d Printing Of Iron Oxide Incorporated Polydimethylsiloxane Soft Magnetic Actuator, Rasoul Bayaniahangar

Dissertations, Master's Theses and Master's Reports

Soft actuators have grown to be a topic of great scientific interest recently. As the fabrication of soft actuators with conventional microfabrication methods are tedious, expensive, and time consuming, employment of 3-D printing fabrication methods appears promising as they can simplify fabrication and reduce the production cost. Complex structures can be fabricated with 3-D printing such as helical coils can achieve actuation performances that otherwise would not be possible with simpler geometries. In this thesis development of soft magnetic helical coil actuators of iron-oxide embedded polydimethylsiloxane (PDMS) was achieved with embedded 3-D printing techniques. Composites with three different weight ratios …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Nanotextured Titanium Surfaces For Implants: Manufacturing And Packaging Aspects, Sachin Bhosle Jan 2017

Nanotextured Titanium Surfaces For Implants: Manufacturing And Packaging Aspects, Sachin Bhosle

Dissertations, Master's Theses and Master's Reports

It has been shown that nanotexturing the surface of otherwise smooth titanium orthopedic materials increases osteoblast proliferation in vitro, and the bone-implant contact area and pullout force in vivo. However, this prior work has not focused on the requirements for scale-up to industrial processes. This dissertation reports on titanium surface modifications by electrochemical anodization using a benign NH4F electrolyte, and a hybrid electrolyte also containing AgF, rather than hazardous hydrofluoric acid used elsewhere. Nanotube fabrication of Ti6Al4V foils, rods, thermal plasma sprayed commercial implants, and laser and e-beam melted powder materials was demonstrated.

It was found …


Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue Jan 2017

Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue

Dissertations, Master's Theses and Master's Reports

Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices.

The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young’s modulus, yield point, and Poisson’s ratio …


Electrospinning Novel Aligned Polymer Fiber Structures For Use In Neural Tissue Engineering, Rachel Martin Jan 2017

Electrospinning Novel Aligned Polymer Fiber Structures For Use In Neural Tissue Engineering, Rachel Martin

Dissertations, Master's Theses and Master's Reports

A suitable tissue scaffold to support and assist in the repair of damaged tissues or cells is important for success in clinical trials and for injury recovery. Electrospinning can create a variety of polymer nanofibers and microfibers, and is being widely used to produce experimental tissue scaffolds for neural applications. This dissertation examines various approaches by which electrospinning is being used for neural tissue engineering applications for the repair of injuries to the central nervous system (CNS) and the peripheral nervous system (PNS). Due to the poor regeneration of neural tissues in the event of injury, tissue scaffolds are being …


An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur Jan 2016

An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur

Dissertations, Master's Theses and Master's Reports

Evaporation is ubiquitous in nature and occurs even in a microgravity space envi- ronment. Long term space missions require storage of cryogenic propellents and an accurate prediction of phase change rates. Kinetic theory has been used to model and predict evaporation rates for over a century but the reported values of accommodation coefficients are highly inconsistent and no accurate data is available for cryogens. The proposed study involves a combined experimental and computational approach to ex- tract the accommodation coefficients. Neutron imaging is used as the visualization technique due to the difference in attenuation between the cryogen and the metallic …


Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang Jan 2016

Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang

Dissertations, Master's Theses and Master's Reports

Solar photovoltaic (PV) devices harvest energy from solar radiation and convert it to electricity. PV technologies, as an alternative to traditional fossil fuels, use clean and renewable energy while minimizing pollution. For decades researchers have been developing thin film solar cells as an important alternatives to the relatively expensive bulk crystal solar cell technology. Among those, hydrogenated amorphous silicon (a-Si:H) solar cells prevails for good efficiency, non-toxic and materially abundant nature. However, a-Si:H thickness must be minimized to prevent light induced degradation, so optical enhancement is necessary. Light manipulation has to be applied and carefully engineered to trap light within …


Dynamic Atomistic Study Of Tunnel Functions In Nanostructured Transitional Metal Oxides, Yifei Yuan Jan 2016

Dynamic Atomistic Study Of Tunnel Functions In Nanostructured Transitional Metal Oxides, Yifei Yuan

Dissertations, Master's Theses and Master's Reports

Alpha (α-) MnO2 is a well know transitional metal oxide possessing one dimensional 2×2 (4.6 × 4.6 Å2) tunnels for accommodation of various ions. Such a characteristic tunneled structure has enabled the wide applications of α-MnO2 in the fields of ion exchange, molecular sieves, biosensor, catalysis and energy storage. This PhD dissertation focuses on the dynamic study of ion transport functionality of α-MnO2 at atomic level using an aberration corrected scanning transmission electron microscopy equipped with a special holder with a scanning tunneling microscopy probe.

The wide application of in situ TEM studying the dynamic …