Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

The Nanoaquarium: A Nanofluidic Platform For In Situ Transmission Electron Microscopy In Liquid Media, Joseph M. Grogan Dec 2011

The Nanoaquarium: A Nanofluidic Platform For In Situ Transmission Electron Microscopy In Liquid Media, Joseph M. Grogan

Publicly Accessible Penn Dissertations

There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has ...


Introducing Porous Silicon As A Sacrificial Material To Obtain Cavities In Substrate Of Soi Wafers And A Getter Material For Mems Devices, Wajihuddin Mohammad Oct 2011

Introducing Porous Silicon As A Sacrificial Material To Obtain Cavities In Substrate Of Soi Wafers And A Getter Material For Mems Devices, Wajihuddin Mohammad

Doctoral Dissertations

Microelectromechanical system (MEMS) resonators have been a subject of research for more than four decades. The reason is the huge potential they possess for frequency applications. The use of a MEMS resonator as the timing element has an experimental history and huge progress has been made in this direction. Vacuum encapsulated MEMS resonators are required for high precision frequency control. Hence, a device with a high quality factor and durability is needed. In this effort, a new process for producing a cavity in the substrate of Silicon on insulator (SOI) MEMS devices and augmenting it with a getter using porous ...


Passive Micromixers And Organic Electrochemical Transistors For Biosensor Applications, Senaka Krishna Kanakamedala Oct 2011

Passive Micromixers And Organic Electrochemical Transistors For Biosensor Applications, Senaka Krishna Kanakamedala

Doctoral Dissertations

Fluid handling at the microscale has greatly affected different fields such as biomedical, pharmaceutical, biochemical engineering and environmental monitoring due to its reduced reagent consumption, portability, high throughput, lower hardware cost and shorter analysis time compared to large devices. The challenges associated with mixing of fluids in microscale enabled us in designing, simulating, fabricating and characterizing various micromixers on silicon and flexible polyester substrates. The mixing efficiency was evaluated by injecting the fluids through the two inlets and collecting the sample at outlet. The images collected from the microscope were analyzed, and the absorbance of the color product at the ...


Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen Aug 2011

Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen

Publicly Accessible Penn Dissertations

Non-volatile random access memories (NVRAM) are promising data storage and processing devices. Various NVRAM, such as FeRAM and MRAM, have been studied in the past. But resistance switching random access memory (RRAM) has demonstrated the most potential for replacing flash memory in use today. In this dissertation, a novel RRAM material design that relies upon an electronic transition, rather than a phase change (as in chalcogenide Ovonic RRAM) or a structural change (such in oxide and halide filamentary RRAM), is investigated. Since the design is not limited to a single material but applicable to general combinations of metals and insulators ...


Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah Jul 2011

Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah

Electrical & Computer Engineering Theses & Disssertations

The ultrafast fast phenomena that take place following the application of a 120 fs laser pulse on 20 nm antimony thin films and 40 nm nanoparticles were studied using time-resolved electron diffraction. Samples are prepared by thermal evaporation, at small thickness (< 10 nm) antimony nanoparticles form while at larger thicknesses we get continuous thin films.

The samples are annealed and studied by static heating to determine their Debye temperatures, which were considerably less than the standard value. The thermal expansion under static heating also yielded the expansion coefficient of the sample material. Nanoparticle samples gave a very accurate thermal expansion coefficient (11 × 10-6 K-1).

Ultrafast time resolved electron diffraction studies with ∼1 ...


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for ...


Optical And Raman Characterization Of Ald Alumina Coated Multiwall Carbon Nanotubes And Nanoporous Gold Film, Naod Belai May 2011

Optical And Raman Characterization Of Ald Alumina Coated Multiwall Carbon Nanotubes And Nanoporous Gold Film, Naod Belai

UNLV Theses, Dissertations, Professional Papers, and Capstones

Due to their large surface to volume ratio nanostructures are inherently unstable. To insure long term stability of nano-devices, they have to be rendered inert to their environment. In this study, nanoporous gold films(NPGF) and multiwall carbon nanotubes were coated with ALD alumina of varying thicknesses. Subsequently, the plasmonic property of the former and electronic property of the latter was monitored by Transmittance and Raman Spectroscopy respectively. Transmittance spectra revealed that NPGF passivated by ALD-alumina maintains its plasmonic properties, i.e. its LSPR supporting properties remained intact. Raman spectra of ALD alumina passivated MWNTs show no coating induced changes ...


Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily Apr 2011

Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily

Electrical & Computer Engineering Theses & Disssertations

Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an ...


Diodes For Optical Rectennas, Sachit Grover Jan 2011

Diodes For Optical Rectennas, Sachit Grover

Electrical Engineering Graduate Theses & Dissertations

Two types of ultra-fast diode are fabricated, characterized, and simulated for use in optical rectennas. A rectenna consists of an antenna connected to a diode in which the electromagnetic radiation received by the antenna is rectified in the diode. I have investigated metal/insulator/metal (MIM) tunnel diodes and a new, geometric diode for use in rectenna-based infrared detectors and solar cells. Factors influencing the performance of a rectenna are analyzed. These include DC and optical-frequency diode-characteristics, circuit parameters, signal amplitude, and coherence of incoming radiation.

To understand and increase the rectification response of MIM-based rectennas, I carry out an ...


Fabrication And Characterization Of Electrospun Cactus Mucilage Nanofibers, Yanay Pais Jan 2011

Fabrication And Characterization Of Electrospun Cactus Mucilage Nanofibers, Yanay Pais

Graduate Theses and Dissertations

This work seeks to fabricate, optimize, and characterize nanofibers of cactus Opuntia ficus-indica mucilage and Poly (vinyl alcohol) (PVA) by electrospinning. Mucilage is a neutral mixture of sugars produced by cactus and PVA is a non-toxic, water-soluble, synthetic polymer, which is widely used as a co-spinning agent for polymers. Mucilage was extracted from the cactus pad and prepared for electrospinning by mixing with acetic acid. Two types of PVA were used differentiating in high and low molecular weights. Concentrations of PVA were varied to find an adequate threshold for fiber formation. Changing the ratio of PVA to cactus mucilage produced ...


Preparation And Characterization Of Iron Oxide And Hydroxide Based Nanomaterials, Guillermo Carbajal Franco Jan 2011

Preparation And Characterization Of Iron Oxide And Hydroxide Based Nanomaterials, Guillermo Carbajal Franco

Open Access Theses & Dissertations

Iron (Fe) oxides and hydroxides are common and abundant materials. They exhibit diverse crystal structures, properties and phenomena by virtue of which they find a wide range of scientific and technological applications. Controlled growth and manipulation of the specific structure and electronic behavior to meet the requirements of a given application is a challenging problem in view of many possible phases and composition of the resulting materials. The preparation method and experimental conditions will, therefore, significantly affect the properties and performance of Fe oxides and hydroxides. The goal of the project is to obtain Fe-based oxide/hydroxide catalytic materials and ...


Magneto-Dielectric Polymer Nanocomposite Engineered Substrate For Rf And Microwave Antennas, Cesar A. Morales Jan 2011

Magneto-Dielectric Polymer Nanocomposite Engineered Substrate For Rf And Microwave Antennas, Cesar A. Morales

Graduate Theses and Dissertations

This dissertation presents the first reported systematic investigation on the implementation of multilayer patch antennas over Fe3O4-based polymer nanocomposite (PNC) magneto-dielectric substrates. The PNC substrate is created by the monodispersion of Fe3O4 nanopthesiss, with mean size of 7.5nm, in a polymeric matrix of Polydimethylsiloxane (PDMS).

Recently, magneto-dielectric substrates have been proposed by several researchers as a means for decreasing the size and increasing the bandwidth of planar antennas. Nevertheless, factors such as high loss and diminished control over magnetic and dielectric properties have hindered the optimal performance of antennas. In addition, the incompatibility and elevated complexity prevents integration of ...