Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Nanoscience and Nanotechnology

A Versatile Python Package For Simulating Dna Nanostructures With Oxdna, Kira Threlfall May 2022

A Versatile Python Package For Simulating Dna Nanostructures With Oxdna, Kira Threlfall

Computer Science and Computer Engineering Undergraduate Honors Theses

The ability to synthesize custom DNA molecules has led to the feasibility of DNA nanotechnology. Synthesis is time-consuming and expensive, so simulations of proposed DNA designs are necessary. Open-source simulators, such as oxDNA, are available but often difficult to configure and interface with. Packages such as oxdna-tile-binding pro- vide an interface for oxDNA which allows for the ability to create scripts that automate the configuration process. This project works to improve the scripts in oxdna-tile-binding to improve integration with job scheduling systems commonly used in high-performance computing environments, improve ease-of-use and consistency within the scripts compos- ing oxdna-tile-binding, and move …


Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert May 2022

Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert

Mechanical Engineering Undergraduate Honors Theses

Sequencing DNA provides a positive impact for the biomedical community by understanding a wide variety of applications such as human genetics, disease, and pathogens. The reason the Arkansas Micro & Nano Systems lab is involved with research in DNA sequencing is due to the current, leading industry method. Nanopore sequencing was developed by Oxford Nanopore Technology in which its sequencing method separates double stranded DNA to electrically characterize individual nucleotides traveling through a charged nanopore. Unfortunately, nanopore sequencing uses biological materials that require a shelf life and drives high cost. Therefore, the Arkansas Micro & Nano Systems lab has developed …


Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore May 2021

Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore

Graduate Theses and Dissertations

Cellulose nanomaterials (CNMs) are derived from plant matter and are comprised of nanoscopic cellulose crystals and fibers. They have a diverse set of applications, from cosmetics to oil recovery. This study focuses on the properties of Oxone® mediated TEMPO-oxidized cellulose nanomaterials (OTO-CNMs) and their use in controlling the transport properties of polymeric substrates. Synthesis and characterization of cellulosic nanoparticles have resulted in the creation of OTO-CNMs with properties that increase hydrophilicity. With added hydrophilicity, OTO-CNMs possess lower fouling propensity, making them ideal membrane additive for transport limited separations such as hemodialysis.

To utilize the material and unique properties thereof, this …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen May 2021

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


Optimized Production And Evaluation Of Cellulose Nanocrystals Derived From Pre-Extracted Kraft Pulp Of Different Wood Species, Gurshagan Kandhola Dec 2019

Optimized Production And Evaluation Of Cellulose Nanocrystals Derived From Pre-Extracted Kraft Pulp Of Different Wood Species, Gurshagan Kandhola

Graduate Theses and Dissertations

Production of nanocellulose from a variety of naturally abundant, locally available and industrially significant wood species provides an opportunity for diversifying the portfolio of traditional pulp and paper industries. The U.S. has a prolific forest products industry with a well-established infrastructure that could be utilized for optimized and customized production of cellulose nanomaterials. However, to achieve that, it is important to a) understand how biorefining strategies for complete fractionation of biomass affect the downstream processing of pulp into nanocellulose, b) maximize the yields of cellulose nanocrystals and nanofibers (CNCs and CNFs) from pretreated raw materials, and c) evaluate if the …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Assessing Commonly Used Methods In Measuring Yield Of Cellulose Nanocrystals, Marilyn Pharr May 2019

Assessing Commonly Used Methods In Measuring Yield Of Cellulose Nanocrystals, Marilyn Pharr

Biological and Agricultural Engineering Undergraduate Honors Theses

Cellulose is a ubiquitous, renewable biopolymer found in plants that can be broken down to isolate cellulose nanocrystals (CNCs). CNCs have been utilized in various applications that include biomedical technology, structural composites, and barrier films because of their unique mechanical, optical, and physicochemical properties. CNCs can be produced by a variety of approaches from cellulosic materials; however, strong acid hydrolysis is the most common and effective technique as it results in stable colloidal suspensions. Existing literature reveals a wide range of CNC yields, depending on the production process, raw material used, and the method of yield estimation. The yields of …


Gold Nanoparticles For Stem Cell Delivery In Myocardial Infarction: Analysis Of Toxicity And Development Of A Cell Culture Platform For Use In An In-Vitro Model Of Mi-Associated Ischemia/Reperfusion, Jeffrey Curran Henson Aug 2018

Gold Nanoparticles For Stem Cell Delivery In Myocardial Infarction: Analysis Of Toxicity And Development Of A Cell Culture Platform For Use In An In-Vitro Model Of Mi-Associated Ischemia/Reperfusion, Jeffrey Curran Henson

Graduate Theses and Dissertations

In this work, the potential for PEGylated gold nanoparticles for use as a platform for stem cell delivery in treatment of myocardial infarction (MI) is preliminarily investigated. Cardiovascular disease is currently the leading cause of death worldwide, with majority of mortality resulting from coronary artery disease and associated MI. The ensuing ischemic conditions resulting from MI cause substantial heart muscle tissue loss and scarring in the heart. Adverse tissue remodeling creates a significant loss in heart function that can result in the formation of cardiac hypertrophy, ventricular dilation and arrythmias. The long-term prognosis of patients who have suffered MI is …


Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder May 2018

Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder

Graduate Theses and Dissertations

Bone is a composite biomaterial with a structural load-bearing function. Understanding the biomechanics of bone is important for characterizing factors such as age, trauma, or disease, and in the development of scaffolds for tissue engineering and bioinspired materials. At the nanoscale, bone is primarily composed of collagen protein, apatite crystals, and water. Though several studies have characterized nanoscale bone mechanics as the mineral content changes, the effect of water, mineral, and carbon nanotube (CNT) content and distribution in fibril gap and overlap regions is unexplored. This study used molecular dynamics to investigate the change in collagen fibril deformation mechanisms as …


A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu Dec 2016

A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu

Graduate Theses and Dissertations

This research focused on the application of electrochemical biosensors for the rapid detection of pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium, in foods. The possible presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food companies. Therefore, the demand for rapid and sensitive methods to detect foodborne pathogens is growing. In this research, an impedimetric immunosensor was first developed for the rapid detection of E. coli O157:H7 and S. Typhimurium in foods. It was based on the techniques of immunomagnetic separation, enzyme labelling, and electrochemical impedance spectroscopy …


Non-Directional Conjugation Of Fluorescent Antibodies To Gold Nanoparticles For Stem Cell Therapy, Kunal B. Shah May 2016

Non-Directional Conjugation Of Fluorescent Antibodies To Gold Nanoparticles For Stem Cell Therapy, Kunal B. Shah

Biomedical Engineering Undergraduate Honors Theses

The objective of this study was to design citrate-coated gold nanoparticles conjugated with FITC-IgG, a fluorescent antibody, and to qualitatively and quantitatively measure the resulting fluorescent emission. Optical properties of the gold nanoparticles were measured at various stages to provide evidence of successful conjugation. The absorbance spectrum of the citrate gold nanoparticles was compared to that of the reaction mixture containing the gold nanoparticles and the FITC-IgG. A noticeable broadening of the absorption peak was observed at 519 nm indicating a surface modification of the gold nanoparticles. Fluorescence data was obtained with a fluorospectrometer and revealed a significant amount of …


Atomic Force Microscopy Based Dna Analysis, Drew Creighton May 2016

Atomic Force Microscopy Based Dna Analysis, Drew Creighton

Mechanical Engineering Undergraduate Honors Theses

This report explores dry and wet scanning of a surface and DNA pickup using an AFM, as well as fluorescent staining of DNA. Dry and wet scans of DNA were obtained using a cantilever AFM tip in tapping mode. Dry scans were found to be clearer than wet scans; however, the drying process was found to decrease the thickness of DNA 2–4 times less than its original thickness. Alternately, wet scans were found to be less clear than dry scans and introduced more noise into the images obtained. Additionally, DNA kept its initial thickness during wet scanning. DNA was capable …


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Graduate Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical spectral …