Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Physical Sciences and Mathematics

2016

Institution
Keyword
Publication

Articles 1 - 30 of 47

Full-Text Articles in Nanoscience and Nanotechnology

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Wave Propagation And Imaging In Structured Optical Media, Zun Huang Dec 2016

Wave Propagation And Imaging In Structured Optical Media, Zun Huang

Open Access Dissertations

Structured optical media, usually characterized by periodic patterns of inhomogeneities in bulk materials, provide a new approach to ultimate control of wave propagation with possible practical applications: from distributed feedback lasers by diffraction gratings, to highly nonlinear performance for super-continuum generation, to fiber-optic telecommunications by microstructured photonic crystal fibers, to invisibility cloaking, to super-resolution imaging with metamaterials etc.

In particular, structured optical media allow to manipulate the wave propagation and dispersion. In this thesis, we focus on engineering the propagation phase dispersion by modulating the compositions and dimensions of the periodic elements. By tailoring the dispersion in momentum space, we …


Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal Dec 2016

Measuring Nonlinear Properties Of Graphene Thin Films Using Z-Scan Technique, Thekrayat Hassan Al Abdulaal

Graduate Theses and Dissertations

The nonlinear studies of two-dimensional (2D) nanomaterials, specifically graphene, are very significant since graphene is finding its usefulness in handling the enormous heat in nanoscale high-density power electronics. Graphene has emerged to be a promising nanomaterial as an excellent heat spreader due to its high thermal conductivity. However, the experimental nonlinear study of graphene materials and their application in developing future optoelectronic devices demands for more developed research.

The research objective is first to build a precise, and sensitive technique to investigate and understand the thermal nonlinear properties, including nonlinear refractive index (n2), nonlinear absorption coefficient (β), and thermo-optic coefficient …


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Graduate Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

USF Tampa Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of …


Novel Magnetic Nanostructures For Enhanced Magnetic Hyperthermia Cancer Therapy, Zohreh Nemati Porshokouh Nov 2016

Novel Magnetic Nanostructures For Enhanced Magnetic Hyperthermia Cancer Therapy, Zohreh Nemati Porshokouh

USF Tampa Graduate Theses and Dissertations

In this dissertation, I present the results of a systematic study on novel multifunctional nanostructure systems for magnetic hyperthermia applications. All the samples have been synthesized, structurally/magnetically characterized, and tested for magnetic hyperthermia treatment at the Functional Materials Laboratory of the University South Florida. This work includes studies on four different systems: (i) Core/shell Fe/γ-Fe2O3 nanoparticles; (ii) Spherical and cubic exchange coupled FeO/Fe3O4 nanoparticles; (iii) Fe3O4 nano-octopods with different sizes; (iv) High aspect ratio FeCo nanowires and Fe3O4 nanorods.

In particular, we demonstrated the enhancement of the heating …


Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar Nov 2016

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar

Doctoral Dissertations

The idea of sequencing a DNA based on single-file translocation of the DNA through nanopores under the action of an electric field has received much attention over the past two decades due to the societal need for low cost and high-throughput sequencing. However, due to the high speed of translocation, interrogating individual bases with an acceptable signal to noise ratio as they traverse the pore has been a major problem. Experimental facts on this phenomenon are rich and the associated phenomenology is yet to be fully understood. This thesis focuses on understanding the underlying principles of polymer translocation, with an …


Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson Oct 2016

Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson

Doctoral Dissertations

Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for treatment of patients with intractable temporal lobe epilepsy, a clinical need that is partially fulfilled to date through a subjective, and at times inconclusive, evaluation of the recorded electroencephalogram (EEG). Using brain connectivity analysis, patterns of causal interactions between brain regions were derived from multichannel EEG of 127 seizures in nine patients with focal, temporal lobe epilepsy (TLE). The statistically significant directed interactions in the reconstructed brain networks were estimated from three second intracranial multi-electrode EEG segments using the Generalized Partial Directed Coherence (GPDC) and validated …


Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury Sep 2016

Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury

Electronic Thesis and Dissertation Repository

Nano-scale zero valent iron (nZVI) has shown promising mobility and in-situ reactivity with chlorinated volatile organic compounds when injected into saturated porous media. The current study evaluated nZVI mobility and subsequent reactivity with in-situ contaminants in a variably saturated porous media. The nZVI particles, synthesized onsite at subzero temperatures, demonstrated complete trichloroethene (TCE) degradation within the target area. Furthermore, a three dimensional finite difference model (CompSim) was utilized to investigate nZVI mobility in variably saturated zones. Model predicted well head data were in very good agreement with field observations. Simulation results showed that the injected slurry migrated radially outward from …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that …


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Graduate Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness …


Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko Jul 2016

Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko

Dissertations and Theses

Magnetic resonance imaging (MRI) has become a powerful clinical modality in diagnostic medicine. It is non-invasive and offers high spatial and temporal resolution. The goal of molecular imaging is to reveal the pathophysiology underlying the observed anatomy and diagnose diseases. The detection of pathological biomarkers can lead to early recognition of diseases and improved monitoring for recurrence. Clinically available contrast agents are limited in their discrimination of contrast between tissues and they tend to have very high detection limits. Because biomarkers are very low in concentration there is a need for high payload deposition of contrast agent (CA) and targeted …


Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins Jul 2016

Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins

Doctoral Dissertations

Van der Waals (vdW) interactions influence a variety of mesoscale phenomena, such as surface adhesion, friction, and colloid stability, and play increasingly important roles as science seeks to design systems on increasingly smaller length scales. Using the full Lifshitz continuum formulation, this thesis investigates the effects of system materials, shapes, and configurations and presents open-source software to accurately calculate vdW interactions. In the Lifshitz formulation, the microscopic composition of a material is represented by its bulk dielectric response. Small changes in a dielectric response can result in substantial variations in the strength of vdW interactions. However, the relationship between these …


Electrospinning Of Polymeric Solutions Using Opuntia Ficus-Indica Mucilage And Iron Oxide For Nanofiber Membranes For Treating Arsenic Contaminated Water, Venkatesh Eppili Jun 2016

Electrospinning Of Polymeric Solutions Using Opuntia Ficus-Indica Mucilage And Iron Oxide For Nanofiber Membranes For Treating Arsenic Contaminated Water, Venkatesh Eppili

USF Tampa Graduate Theses and Dissertations

Water is the essential part of every organism and it is also a vital constituent of healthy living and diet. Unfortunately water contamination over the past decade has increased dramatically leading to various diseases. As technology advances, we are detecting many pollutants at smaller levels of concentrations. Arsenic (As) is one of those major pollutants, and Arsenic poisoning is a condition caused due to excess levels of arsenic in the body. The main basis for Arsenic poisoning is from ground water which naturally contains high concentrations of arsenic. A case study from 2007 states that over 137 million people in …


Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz Jun 2016

Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz

USF Tampa Graduate Theses and Dissertations

In this dissertation different van der Waals heterostructures such as graphene-MoS2 and MoTe2-MoS2 were prepared and characterized. In the first heterostructure, polycrystalline graphene was synthesized by chemical vapor deposition and transferred on top of MoS2 single crystal. In the second heterostructure, MoTe2 monolayers were deposited on MoS2 by molecular beam epitaxy.

Characterization of graphene-MoS2 heterostructures was conducted by spin and angle resolve spectroscopy which showed that the electronic structure of the bulk MoS2 and graphene in this van der Waals heterostructures is modified. For MoS2 underneath the graphene, a band …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Acceleration Of Ddscat Computation By Parallelization On A Supercomputer, Manoj V. Seeram May 2016

Acceleration Of Ddscat Computation By Parallelization On A Supercomputer, Manoj V. Seeram

Chemical Engineering Undergraduate Honors Theses

The DDSCAT software is enabled for use of MPI or OpenMP to distribute calculation of different particle orientations amongst multiple processors on a high performance system. Run times for these simulations have been tested to take hours or days however and simulating varying orientations is not always necessary. If a simulation with only one particle orientation is submitted, DDSCAT could still potentially parallelize the simulation by wavelength calculations but it is unknown if this is the case. In this paper, we will be (i) quantifying the reduction in computation time that MPI provides relative to an equivalent MPI disabled simulation …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Physics Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …


Nanoscale Frictional Properties Of Nickel With One-Dimensional And Two-Dimensional Materials, Timothy K. Schlenger May 2016

Nanoscale Frictional Properties Of Nickel With One-Dimensional And Two-Dimensional Materials, Timothy K. Schlenger

Mechanical Engineering Undergraduate Honors Theses

When looking at the nanoscale, material interface interactions have been observed to exhibit particularly interesting properties. Our research looks into various combinations of carbyne and graphene atop a nickel block to look into the interface friction properties between them. Both the carbyne and graphene are tested using steered molecular dynamics (SMD) in sheering and peeling directions along the surface of the nickel block. These tests are then analyzed by comparing the magnitude of the acting force versus the displacement of the carbon allotrope sample across the nickel block. It is found that as the width of a carbon allotrope sample …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Mechanical Engineering Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …


Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han Apr 2016

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han

Chemistry & Biochemistry Theses & Dissertations

In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. Chapter 2 describes the influence of resorcinarene surfactants functionalized with amine- and thiol- headgroups in determining the morphology of monometallic Pt nanoparticles synthesized via the Brust-Schiffrin reaction. We found that while resorcinarene benzylthiol can lead to the formation of highly branched Pt nanostructures, resorcinarene amine can lead to the formation of anisotropic crystalline Pt nanoparticles. Further, we have evaluated the influence of resorcinarene ligands in determining the catalytic activity of these …


Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Mar 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In the …


(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari Mar 2016

(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari

Doctoral Dissertations

The research in this dissertation is categorized into two parts. The first part is focused on investigation of order-to-disorder transitions (ODT) in nanocomposites of an amphiphilic block copolymer containing various hydrogen-bonded additives, and fabrication of novel mesoporous silica based materials by utilizing such nanocomposites as templates. Disordered Pluronic®, poly(ethylene oxide) (PEO)−poly(propylene oxide) (PPO)−PEO triblock copolymer upon blending with small molecule additives containing hydrogen-bond-donating functional groups (carboxyl or hydroxyl) result into ordered nanoscale morphologies by preferentially interacting with the hydrophilic PEO chains in the Pluronic®. The dependence of ODT-temperature in these novel Pluronic®/small-molecule-additive complexes on composition, number and type of functional …


One-Dimensional Nanostructure And Sensing Applications: Tin Dioxide Nanowires And Carbon Nanotubes, Hoang Anh Tran Feb 2016

One-Dimensional Nanostructure And Sensing Applications: Tin Dioxide Nanowires And Carbon Nanotubes, Hoang Anh Tran

Dissertations and Theses

The key challenge for a nanomaterial based sensor is how to synthesize in bulk quantity and fabricate an actual device with insightful understanding of operational mechanisms during performance. I report here effective, controllable methods that exploit the concepts of the "green approach" to synthesize two different one-dimensional nanostructures, including tin oxide nanowires and carbon nanotubes. The syntheses are followed by product characterization and sensing device fabrications as well as sensor performance understanding at the molecular level. Sensor-analyte response and recovery kinetics are also presented.

The first part of the thesis describes bulk-scale synthesis and characterization of tin oxide nanowires by …