Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Life Sciences

Electron Microscopy

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult due …


Fibrinogen-Conjugated Gold-Coated Magnetite Nanoparticles For Antiplatelet Therapy, Evan Schuerer Krystofiak Aug 2013

Fibrinogen-Conjugated Gold-Coated Magnetite Nanoparticles For Antiplatelet Therapy, Evan Schuerer Krystofiak

Theses and Dissertations

Ischemic stroke is the world's second leading cause of death and accounts for 2-4% of total worldwide healthcare costs. Ischemic stroke is caused by the occlusion of arteries responsible for supplying blood to the brain, which can result in disability or death. Arterial blood clots consist of aggregates of activated platelets wrapped in a mesh of fibrin. Tissue plasminogen activator, the only current FDA-approved treatment for ischemic stroke, functions by lysing fibrin in a blood clot. Unfortunately, tissue plasminogen activator significantly increases bleeding risks, which restricts its use. Alternatively, targeting and disrupting platelets within a clot could improve stroke outcome. …