Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

New Approaches To Chalcogenide Materials For Thermoelectrics: Lead Telluride-Based Nanostructures And Facile Synthesis Of Tetrahedrite And Doped Derivatives, Derak Justin James Jan 2016

New Approaches To Chalcogenide Materials For Thermoelectrics: Lead Telluride-Based Nanostructures And Facile Synthesis Of Tetrahedrite And Doped Derivatives, Derak Justin James

Wayne State University Dissertations

The overall purpose of this work is to address several of the roadblocks to use of thermoelectric materials for generation of electricity, namely inefficient processing of materials and low performance, commonly rated by the figure of merit, ZT=T2/tot. The ZT includes  as the Seebeck coefficient,  as electrical resistivity, T as the average temperature, and tot as total thermal conductivity. tot is the sum of electronic charge carrier (C) and lattice (L) contributions to thermal conductivity. Attempts to increase ZT in the literature to values >1 have focused on decreasing the thermal conductivity via nanostructuring or optimizing the ...


Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu Jan 2016

Novel Design And Synthesis Of Structured Iron Oxides For Battery Applications, Jian Zhu

Wayne State University Dissertations

Lithium-ion batteries (LIBs) are currently the dominant powder source for personal computers and portable electronics. LIBs also play important roles in larger-scale applications, including electric drive vehicles (EVs, HEVs) and grid-energy storage. To meet the increasing demand for energy storage, it is very urgent and crucial to develop next-generation LIBs using alternative electrode materials. For example, carbon is still exclusively used as anode materials in current LIBs. However, the theoretical capacity of graphite (372 mA h g–1 based on LiC6) has almost been achieved, and it becomes one of the bottlenecks to further increase the energy density of LIBs ...