Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemical Engineering

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 144

Full-Text Articles in Nanoscience and Nanotechnology

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo Oct 2020

Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo

LSU Master's Theses

Additive manufacturing allows the rapid process of complex objects with excellent design flexibility. However, the products often exhibit poor mechanical properties when pure polymer is applied as printable material. In this work, we demonstrate that printability of polymer can be dramatically improved when particle filler is added to form reinforced polymer composites. Furthermore, the interaction between filler and polymer matrix leads to the enhancement in mechanical properties of the printed product. The material reinforcement induced by addition of fillers enables the wide application of polymer composites to print structures with unique features. In the printing of silica-reinforced pNIPAM composite, we …


Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner Aug 2020

Growth Of Small Particles In Nonequilibrium Plasmas, Necip Berker Üner

McKelvey School of Engineering Theses & Dissertations

Nonequilibrium plasma (NEP) is an extraordinary environment for material synthesis. NEP is comprised of hot electrons with temperatures greater than 10000 K and of cold ions and neutrals that are usually at few hundred kelvins above room temperature. Due to this large difference in species’ temperatures, the assumption of local thermal equilibrium does not hold in NEP. Therefore, NEP can act as a unique processor of mass, and it can transform materials along pathways that are not accessible by methods wherein local thermal equilibrium is valid. For decades, NEPs have been employed in the semiconductor industry to manufacture many thin …


Manufacturing Of Carbon-Based Hybrid Nanocomposites With Engineered Functionalities Via Laser Ablation Synthesis In Solution (Lasis) Techniques, Erick Leonardo Ribeiro Aug 2020

Manufacturing Of Carbon-Based Hybrid Nanocomposites With Engineered Functionalities Via Laser Ablation Synthesis In Solution (Lasis) Techniques, Erick Leonardo Ribeiro

Doctoral Dissertations

Carbon-based composite materials have long been fabricated and extensively used in our daily lives. In the past decades, with rapid development of nanotechnology, these class of material have gained even more attention owing to their outstanding properties which directly results in their prospects to revolutionize technological development in many fields, ranging from medicine to electronics. Nevertheless, for certain applications, including electrochemical energy storage/conversion devices, the chemically inert nature of these materials creates obstacles and thus requires their coupling with other active species. This thesis explores the use of Laser Ablation Synthesis in Solution (LASiS) in tailoring promising strategies and pathways …


Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu Jul 2020

Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu

Doctoral Dissertations

This thesis aims to extend the understanding and explore the application of temperature-responsive hydrogel systems by integrating microelectromechanical systems (MEMS). Stimuli-responsive hydrogel systems are immensely investigated and applied in numerous fields, and interfacing with micro- and nano-fabrication techniques will open up more possibilities. In Chapter 2, the first biologically relevant, in vitro cell stretching device based on hydrogel surface instability was developed. This dynamic platform is constructed by embedding micro-heater devices under temperature-responsive surface-attached hydrogels. The fast and regional temperature change actuates the stretching and relaxation of the seeded human artery smooth muscle cell (HASMC) via controllable surface creasing instability. …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


The Artificial Leaf: An Investigation Into The Sociotechnical Integration Of New Solar Energy Innovations, Alexandra K. Treml, Jamie M. Mears May 2020

The Artificial Leaf: An Investigation Into The Sociotechnical Integration Of New Solar Energy Innovations, Alexandra K. Treml, Jamie M. Mears

Senior Honors Projects, 2020-current

Increasing global demand, combined with the volatility of fossil fuels, has called for a large-scale increase in renewable energy production. Photovoltaics hold significant potential, but by nature, solar energy is intermittent and lacks dispatchability. Researchers around the world are working to create innovative solutions that utilize semiconductors found in solar cell technologies in new ways. This project harnesses photoelectrochemical water-splitting, which uses light energy to dissociate water molecules into hydrogen and oxygen. When the water-splitting device is submerged in saltwater and illuminated by sunlight, oxygen and hydrogen gas are produced on opposite surfaces, and can be either released or stored …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Investigating New Methods To Develop Perovskite Solar Cells, Amani Hussain Alfaifi Jan 2020

Investigating New Methods To Develop Perovskite Solar Cells, Amani Hussain Alfaifi

Electronic Theses and Dissertations

Discovering the potential of organic-inorganic metal halide perovskites (MHP) as a harvesting material in solar cells has strongly affected the research direction in solar energy. The fascinating optical and electronic properties offered by MHP combined with tremendous effort from scientists around the world have improved the efficiency to about 25% in a decade.

In the first part of the dissertation, we studied the lamination process as a new fabrication method for producing self-encapsulated perovskite solar cells based on laminating half stacks,as opposed to the conventional layer-by-layer method. Our work focused on optimizing the lamination process of complex triple cations perovskite …


Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to produce …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Advanced Electrodes And Electrolytes For Long-Lived And High-Performance Lithium-Sulfur Batteries, Deepesh Gopalakrishnan Jan 2020

Advanced Electrodes And Electrolytes For Long-Lived And High-Performance Lithium-Sulfur Batteries, Deepesh Gopalakrishnan

Wayne State University Dissertations

ABSTRACT

ADVANCED ELECTRODES AND ELECTROLYTES FOR LONG-LIVED AND HIGH-PERFORMANCE LITHIUM-SULFUR BATTERIES

by

DEEPESH GOPALAKRISHNAN

August 2020

Advisor: Dr. Leela Mohana Reddy Arava

Major: Mechanical Engineering

Degree: Doctor of Philosophy

Lithium – Sulfur (Li-S) batteries have received much attention and considered as a promising candidate for next generation energy storage devices because of their high theoretical energy density (≈2600 Wh kg‒1) and environmental friendliness. However, the uncontrollable growth of lithium dendrites in the lithium metal anode and the fatal effect of polysulfide shuttle hinder their practical applications. The formation of dendrites during repeated Li plating/stripping processes results in: reduced Li availability …


Synthesis Of Vo2/Poly(Mma-Co-Dmemuabr) Antimicrobial/Thermochromic Dual-Functional Coating And Reactivity Ratios Study, Yixian Liu Nov 2019

Synthesis Of Vo2/Poly(Mma-Co-Dmemuabr) Antimicrobial/Thermochromic Dual-Functional Coating And Reactivity Ratios Study, Yixian Liu

Electronic Thesis and Dissertation Repository

Antimicrobial/thermochromic dual-functional coatings were successfully synthesized via UV-curing. The quaternary ammonium compound (QAC) N,N-dimethyl-N-{2-[(2-methylprop-2-enoyl)oxy]ethyl}undecane-1-aminium bromide (dMEMUABr) was synthesized and copolymerized with methyl methacrylate (MMA) for antimicrobial properties. Vanadium oxide (VO2) nanoparticles were evenly dispersed within the coating, providing thermochromic properties. The dual-functional coating showed high luminous transmittance (Tlum(25°C) =36.1 %) and solar energy modulation ( Tsol=5.8 %). 90.3 % of bacteria reduction was observed against Escherichia coli within 24 h contact. To further understand the sequence distribution of the copolymer poly(MMA-co-dMEMUABr), the reactivity ratios of MMA and dMEMUABr monomer were studied and compared under thermal …


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar Oct 2019

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman Aug 2019

Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman

Dissertations

Drug nanocomposites and amorphous solid dispersions (ASDs) are two major formulation platforms used for the bioavailability enhancement of BCS Class II drugs. The major drawback of nanocomposites is their inability to attain high drug supersaturation during in vitro (<50% relative supersaturation) and in vivo dissolution. On the other hand, formulating an amorphous solid dispersion (ASD) with high drug loading (>20%) that releases drug rapidly, while generating and maintaining high supersaturation over at least three hours is challenging. The goal of this thesis is to develop a fundamental understanding of the impact of anionic surfactants–polymers on in vitro drug release from nanocomposites and ASDs, while addressing the above challenges. To achieve this goal, the following objectives are set: (1) compare griseofulvin …


Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng Aug 2019

Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng

Dissertations

Enzymatic biofuel cells (EBFCs) convert the chemical energy of biofuels, such as glucose and methanol, into electrical energy by employing enzymes as catalysts. In contrast to conventional fuel cells, EBFCs have a simple membrane-free fuel cell design due to the high catalytic specificity of the enzymes, but the power densities obtained are lower. Although the primary goal of research on EBFCs has been to develop a sustainable power source that can be directly implanted in the human body to power bio-devices, other applications such as the use of a flexible film or fuel cell patch as a wearable power source …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt Jul 2019

Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt

Doctoral Dissertations

The self-assembly of block copolymers (BCP) into microphase separated structures is an attractive route to template and assemble functional nanoparticles (NP) into highly ordered nanocomposites and is central to the “bottom up” fabrication of future materials with tunable electronic, optical, magnetic, and mechanical properties. The optimization of the co-assembly requires an understanding of the fundamentals of phase behavior, intermolecular interactions and dynamics of the polymeric structure. Rheology is a novel characterization tool to investigate these processes in such systems that are not accessible by other means. With the combination of X-ray scattering techniques, structure-property relationships are determined as a function …


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien May 2019

Development Of A Ws2 Catalyst For Hydrogen Evolution And Improvement Via Platinum Nanoparticle Decoration, Alexander O'Brien

Chemical Engineering Undergraduate Honors Theses

In response to a growing global need to improve utilization of green energy, the concept of renewable energy storage via electrolytic hydrogen production has gained popularity in recent years. However, the prohibitive expense of the bulk platinum catalysts currently used for the hydrogen evolution reaction prevents such a concept from being widely adoptable. This research focuses on a possible alternative catalyst, nanolayer WS2, which is capable of promoting the hydrogen evolution reaction while maintaining economic viability. Bulk WS2 was prepared in semiconducting, nanolayer form through liquid phase exfoliation. Prepared catalyst inks consisting of this material demonstrated successful …


Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr. May 2019

Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr.

Graduate Theses and Dissertations

Continued population growth and the decrease of existing energy platforms demands long-term solutions for development and implementation of scalable plasmonic metamaterials for energy and agricultural applications. Self-assembled nanoantenna into random and ordered arrangements are advanced herein for optical and thermal enhancements in scalable thin film. An analytical approach to estimating the thermal dynamics of random arrangements of nanoantenna resulted in estimates within 30% across a range of geometric parameters, nanoantenna-containing media, and thermal parameters. Multimodal thermal dynamics of polymer thin films containing gold nanoparticles (AuNPs) were observed through the natural log of the dimensionless temperature driving force plotted versus time …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri Apr 2019

Microwave And Ultrasonic Assisted Synthesis Of Zeolites From Coal Fly Ash In Batch And Circulating Batch Operation, Tahani Hassn Aldahri

Electronic Thesis and Dissertation Repository

This research was focused on the production of zeolites from CFA throughutilizing ultrasound and microwave power. The initial conventional heating process of 6 h prior to microwave irradiation for samples with high solid-to-liquid (S/L) ratio (CFA mass/ NaOH solution volume) led to a higher yield of zeolite and decreased the synthesis time and consumption of energy,while keeping the high quality of the synthesized zeolite intact. The crystal growth of the nuclei generated over 6 h of conventional hydrothermal treatment was enhanced by the post-microwave heating. Ultrasound-assisted zeolitizationCFA was also applied in this research.

When ultrasound energy was applied after hydrothermal …


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …


The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock Jan 2019

The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock

Theses and Dissertations--Chemical and Materials Engineering

Ceria (cerium oxide) nanomaterials, or nanoceria, have commercial catalysis and energy storage applications. The cerium atoms on the surface of nanoceria can store or release oxygen, cycling between Ce3+ and Ce4+, and can therefore act as a therapeutic to relieve oxidative stress within living systems. Nanoceria dissolution is present in acidic environments in vivo. In order to accurately define the fate of nanoceria in vivo, nanoceria dissolution or stabilization is observed in vitro using acidic aqueous environments.

Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, citric acid, is …