Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of Nebraska - Lincoln

Metrology

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Prediction Of Soakout Time Using Analytical Models, B. Chakravarthy, H. P. Cherukuri, R. G. Wilhelm Jan 2002

Prediction Of Soakout Time Using Analytical Models, B. Chakravarthy, H. P. Cherukuri, R. G. Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

In precision manufacturing enterprises, machine parts at nonstandard temperatures are often soaked to standard temperature prior to making any dimensional measurements. The soakout times are usually determined using lumped heat-transfer models where the part temperatures are assumed to be uniform. This article discusses conditions under which lumped model assumptions are valid by comparing lumped analyses for various shapes and materials with the more general finite element results. In addition, the effect of ambient temperature cycling on part response is also studied.


Task Specific Uncertainty In Coordinate Measurement, R. G. Wilhelm, R. Hocken, H. Schwenke Jan 2001

Task Specific Uncertainty In Coordinate Measurement, R. G. Wilhelm, R. Hocken, H. Schwenke

Department of Mechanical and Materials Engineering: Faculty Publications

Task specific uncertainty is the measurement uncertainty associated with the measurement of a specific feature using a specific measurement plan. This paper surveys techniques developed to model and estimate task specific uncertainty for coordinate measuring systems, primarily coordinate measuring machines using contacting probes. Sources of uncertainty are also reviewed.


Part Form Errors Predicted From Machine Tool Performance Measurements, R. G. Wilhelm, N. Srinivasan, F. Farabaugh, R. Hocken Jan 1997

Part Form Errors Predicted From Machine Tool Performance Measurements, R. G. Wilhelm, N. Srinivasan, F. Farabaugh, R. Hocken

Department of Mechanical and Materials Engineering: Faculty Publications

Machine tool performance testing, as defined by IS0 230 and ANSI B5.54 has been successfully used to maintain and improve the accuracy and repeatability of production-level machine tools. In this study, a controlled series of experiments have been used to test the efficacy of these performance tests in the prediction of part form errors. Results are shown for flatness, squareness, position, and profile tolerances. The experimental results suggest that standard machine tool performance tests can also be used to predict the “best-case” tolerances that can be achieved for particular part features.