Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Journal

2017

Discipline
Institution
Keyword
Publication

Articles 1 - 20 of 20

Full-Text Articles in Nanoscience and Nanotechnology

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin Dec 2017

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin

Journal of Electrochemistry

In this work, the NiS2 nanosheets have been synthesized using Ni(OH)2 as a precursor through a sacrificial template method. The microstructure and chemical composition of as-prepared NiS2 were characterized by XRD, EDS, BET, SEM and TEM techniques. The results showed that both Ni(OH)2 and NiS2 were composed of nanoplates. The electrochemical tests revealed that NiS2 exhibited the high specific capacitance of 1067.3 F•g-1 at a current density of 1 A•g-1 and excellent rate performance. Furthermore, in order to evaluate the practical application of NiS2, an asymmetric supercapacitor, NiS2 as …


Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang Dec 2017

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

This paper describes a simple CO-assisted reduction approach for the controllable synthesis of ultrathin Pd nanowires along the one-dimensional (1D) direction. Ultrathin Pt films from one to several atomic layers were successfully decorated onto ultrathin Pd nanowires by utilizing Cu UPD deposition, and followed by in-situ redox replacement reaction of UPD Cu by Pt. The core–shell structure and composition of the Pd@Pt ultrathin nanowires have been verified using transmission electron microscopy and energy dispersive X-ray spectrometry. The core–shell Pd@Pt ultrathin nanowires exhibited comparative electrocatalytic activity and improved durability for the oxygen reduction reaction in comparison with commercial Pt black. The …


Can Schools Use Nanotechnology To Prevent Cell Phones From Ringing, Sarah C. Boyer Sep 2017

Can Schools Use Nanotechnology To Prevent Cell Phones From Ringing, Sarah C. Boyer

Oklahoma Journal of Law and Technology

No abstract provided.


Design And Validation Of A Low Cost High Speed Atomic Force Microscope, Michael Ganzer, Tien Pham Sep 2017

Design And Validation Of A Low Cost High Speed Atomic Force Microscope, Michael Ganzer, Tien Pham

Journal of Undergraduate Research at Minnesota State University, Mankato

The Atomic Force Microscope (AFM) is an important instrument in nanoscale topography, but it is expensive and slow. The authors designed an AFM to overcome both limitations. To do this, they used an Optical Pickup Unit (OPU) from a DVD player as the laser and photodetector system to minimize cost and they did not implement a vertical control loop, which maximized potential speed. Students will be able to be use this device to make nanoscale measurements and engage in micro-engineering. To prototype this idea, the authors tested an OPU with a silicon wafer and demonstrated the ability to consistently distinguish …


Effects Of Surface Modification Modes On Proton-Over-Vanadium Ion Selectivity Of Nafion®Membrane For Application In Vanadium Redox Flow Battery, Qing-Long Tan, Hai-Ning Wang, Shan-Fu Lu, Da-Wei Liang, Chun-Xiao Wu, Yan Xiang Aug 2017

Effects Of Surface Modification Modes On Proton-Over-Vanadium Ion Selectivity Of Nafion®Membrane For Application In Vanadium Redox Flow Battery, Qing-Long Tan, Hai-Ning Wang, Shan-Fu Lu, Da-Wei Liang, Chun-Xiao Wu, Yan Xiang

Journal of Electrochemistry

The effect of surface modification modes on proton-over-vanadium ion selectivity was studied by spin-coating chitosan-Phosphotungstic Acid (PWA) as a single or double layer on Nafion membrane surface. To suppress the vanadium ions permeation through the Nafion? membrane in a vanadium redox flow battery (VRFB), the single surface-modified Nafion membrane (Nafion/chitosan-PWA)S and double surface-modified Nafion membrane (Nafion/chitosan-PWA)D demonstrated a 89.9% and 92.7% reduction of vanadium ion permeability in comparison with pristine Nafion, respectively. The (Nafion/chitosan-PWA)D exhibited betterhigher selectivity between proton and vanadium ions than the (Nafion/chitosan-PWA)S at the same layer thickness. Furthermore, the columbic efficiency for the VRFB single cell based …


Surface Chemical Properties Of Mo2C, W2C, Mo2N And W2N Probed With Co, Co2And O2 Adsorption: A Dft Analysis, Jingyun Ye, Tianyu Zhang, Lingyun Xu, Shuxia Yin, Krishanthi Weerasinghe, Pamela Ubaldo, Ping And Ge Qingfeng He Aug 2017

Surface Chemical Properties Of Mo2C, W2C, Mo2N And W2N Probed With Co, Co2And O2 Adsorption: A Dft Analysis, Jingyun Ye, Tianyu Zhang, Lingyun Xu, Shuxia Yin, Krishanthi Weerasinghe, Pamela Ubaldo, Ping And Ge Qingfeng He

Journal of Electrochemistry

Transition metal carbides and nitrides are attractive materials for electrodes in many electrochemical energy storage and conversion applications. In the present study, we use density functional theory slab calculations to characterize the surface chemical properties of molybdenum (Mo) and tungsten (W) carbides and nitrides, namely, Mo2C, W2C, Mo2N and W2N with the adsorption of CO, CO2 and O2. These probing molecules provide measures of in both acidity/basicity and redox property of for the surfaces of these carbides and nitrides. Our results show that Lewis basic sites were responsible for CO2 …


Density Functional Investigation On Cathode/Electrolyte Interface In Solid-State Lithium Batteries, Xuelong Wang, Ruijuan Xiao, Yong Xiang, Hong Li, Liquan Chen Aug 2017

Density Functional Investigation On Cathode/Electrolyte Interface In Solid-State Lithium Batteries, Xuelong Wang, Ruijuan Xiao, Yong Xiang, Hong Li, Liquan Chen

Journal of Electrochemistry

The rapidly expanding application of lithium ion batteries stimulates research interest on energy storage devices with higher energy density, better safety and faster charge/discharge speed. All-solid-state lithium batteries have been considered as promising candidates because of their fewer side reactions and better safety compared with conventional lithium-ion batteries with organic liquid electrolytes. Looking for well-matched electrode/electrolyte interfaces is one of the keys to ensuring good comprehensive performance of solid-state lithium batteries. In this report, with the aid of first-principles simulations, the local structure and lithium ions transportation properties of electrolyte surfaces and cathode/electrolyte interfaces are investigated. The β-Li3PS …


A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires As A Cathode Material For Sodium Ion Batteries, Guang-Rui Zhang, Li-Qiang Hu, Bao-Zhu Zhang Aug 2017

A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires As A Cathode Material For Sodium Ion Batteries, Guang-Rui Zhang, Li-Qiang Hu, Bao-Zhu Zhang

Journal of Electrochemistry

In recent years, the development of lithium ion batteries (LIBs) has been limited due to the insufficient lithium resource and increasing cost. As a promising candidate, sodium ion batteries (SIBs) with the similar electrochemical mechanism and lower cost than LIBs are developing rapidly. However, as a result of the larger radius of Na+ compared with Li+, the crystalline structures of the most electrode materials are damaged severely during the intercalation of Na+, which limits the electrochemical properties of SIBs. Thus, developing new types of electrode materials for SIBs is particularly important. Among the cathode materials, …


Characteristics And Mechanism For The Simons Electrochemical Fluorination Of Methanesulfonyl Fluoride, Wen-Lin Xu, Bao-Tong Li, Da-Wei Wang, Ya-Qiong Wang Jun 2017

Characteristics And Mechanism For The Simons Electrochemical Fluorination Of Methanesulfonyl Fluoride, Wen-Lin Xu, Bao-Tong Li, Da-Wei Wang, Ya-Qiong Wang

Journal of Electrochemistry

The characteristics and mechanism for the Simons electrochemical fluorination processes were investigated during the electrochemical fluorination of CH3SO2F to CF3SO2F. The results showed that the reaction mechanism for the electrochemical fluorination of organic compounds to organic fluorides was the same as that of chemical fluorination processes using fluorinating agents such as CoF3. The electrochemical fluorination in anhydrous HF was a heterogeneous process, and nickel fluorides on the surface of the nickel anode played the role of a mediator in the Simons process to transfer oxidation potential from the anode to …


Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen Jun 2017

Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen

Journal of Electrochemistry

The tin dioxide (SnO2) nanoparticles were synthesized by using a simple hydrothermal route in the presence of tetrapropyl ammonium bromide (TPAB) as a surfactant. Accordingly, the titanium mesh based SnO2 catalyst electrode was prepared. The morphologies and structures of SnO2 nanostructures were characterized by scanning electron microscopy and X-ray diffraction spectrometry. The influences of reactant concentration, reaction temperature and time on the morphology of the products were investigated in detail. The electrocatalytic performance of SnO2 for the reduction of nitrobenzene with zinc was studied. Possible formation process and growth mechanism for such hierarchical SnO2 …


Comparative Studies Of Fe, Ni, Co And Their Bimetallic Nanoparticles For Electrochemical Water Oxidation, Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen Apr 2017

Comparative Studies Of Fe, Ni, Co And Their Bimetallic Nanoparticles For Electrochemical Water Oxidation, Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen

Journal of Electrochemistry

The design of efficient, durable, and earth-abundant electrocatalysts via environmentally compatible strategies for the oxygen evolution reaction (OER) is a vital for energy conversion processes. Herein we report a facile approach for the fabrication of low-cost and earth abundant metal catalysts, including iron (Fe), nickel (Ni), cobalt (Co), CoNi, and CoFe nanoparticles (NPs) on titanium (Ti) substrates through a one-step electrochemical deposition. Field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) spectrocopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were employed to characterize these nanoparticles. Our electrochemical results revealed that among the five synthesized nanomaterials, the …


Resistive-Pulse Analysis Of Single Phospholipid Vesicles Using Quartz Nanochannels, T. Cox Jonathan, Zhang Bo Apr 2017

Resistive-Pulse Analysis Of Single Phospholipid Vesicles Using Quartz Nanochannels, T. Cox Jonathan, Zhang Bo

Journal of Electrochemistry

We report the uses of resistive-pulse method and quartz nanochannels for the detection and size analysis of single vesicles. Cylindrical shape quartz nanochannels have been used to detect single phospholipid vesicles ranging from 100 to 300 nm and polystyrene nanoparticles ranging from 170 to 400 nm in diameter. Translocations of single vesicles and nanoparticle were detected as individual square current pulses, which could be used to determine particle size. Our results show excellent agreement between the particle/vesicle sizes obtained from nanochannels and those from dynamic light scattering (DLS) and scanning electron microscopy (SEM). This electronic-based method was found to be …


Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou Apr 2017

Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou

Journal of Electrochemistry

Alloying Pt with the first row non-noble transition metals has been demonstrated to increase the catalytic activity toward oxygen reduction reaction (ORR), which is the cathode reaction of the proton exchange membrane fuel cells (PEMFCs) and metal-air batteries. However, how much the ORR activity improvement comes from the alloying elements remains controversial. In this paper, the nanocubes of PtMn, PtFe, PtCo, and PtNi with the similar size and composition were prepared and their ORR activities were explored, in order to investigate the effects of alloying elements on the catalytic activity. The use of cubic shape particles minimizes the contribution to …


Reconstruction Of Distributions Of Nanoparticles Or Electroactive Nano-Components In Electrochemical Arrays Based On Chronoamperometric Data, Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore Apr 2017

Reconstruction Of Distributions Of Nanoparticles Or Electroactive Nano-Components In Electrochemical Arrays Based On Chronoamperometric Data, Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore

Journal of Electrochemistry

The main scope of this work was to elaborate and test a simple mathematical and numerical procedure for reconstructing the probability density distributions f(ρ) characterizing the distribution of electroactive or electrocatalytic nano-components present or deposited on the electrochemically-inert surface of a planar conductor based on the time-dependent chronoamperometric responses of the corresponding electrochemical array. The mathematical and numerical validity of the procedure was established for three types of arrays (one periodical, two involving random dispersions) involving near-spherical nano-components dispersed on a flat surface. Indeed, altogether, these three types represent most 2D-experimental electrochemical nano-arrays used for analytical or electrocatalytic purposes. This …


Rutile Tio2 Nanosheet Arrays Planted On Magnetron Sputtered Ti Metal Layers For Efficient Perovskite Solar Cells, Nang Zhang, Meidan Ye, Xiaoru Wen, Changjian Lin Apr 2017

Rutile Tio2 Nanosheet Arrays Planted On Magnetron Sputtered Ti Metal Layers For Efficient Perovskite Solar Cells, Nang Zhang, Meidan Ye, Xiaoru Wen, Changjian Lin

Journal of Electrochemistry

In this work, vertical rutile titanium oxide (TiO2) nanosheet arrays (NSAs) were firstly hydrothermally grown on the top of thin titanium (Ti) metal layers which were loaded on fluorine doped tin oxide (FTO) substrates by the DF magnetron sputtering deposition method. After an annealing post-treatment, the Ti metal layers were transformed into the compact TiO2 layers with a strong connection between the rutile TiO2 NSAs and the FTO substrates. For comparison, the rutile TiO2 NSAs were similarly planted over two compact TiO2 layers fabricated through atomic layer deposition (ALD) and spin coating (SC) methods, …


Novel Composites Between Nano-Structured Nickel Sulfides And Three-Dimensional Graphene For High Performance Supercapacitors, Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang Apr 2017

Novel Composites Between Nano-Structured Nickel Sulfides And Three-Dimensional Graphene For High Performance Supercapacitors, Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang

Journal of Electrochemistry

In this paper, a three-dimensional graphene (3DG) network grown on nickel foam was employed as a template for synthesizing graphene-based composite materials of supercapacitor electrode. The composites (crystal Ni3S2 nanorods on the surface of 3DG (abbreviated as Ni3S2/3DG)) were obtained through a one-step hydrothermal reaction. The morphological and structural evolution of the Ni3S2/3DG composites were investigated by SEM, TEM, XRD and Raman spectroscopy. Detailed electrochemical characterization showed that the Ni3S2/3DG-coated electrodes exhibited both a specific capacitance as high as 1825 F·g-1 at 5 mV·s …


Electrodeposition Of Ruo2 Layers On Tio2 Nanotube Array Toward Co2 Electroreduction, Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai Apr 2017

Electrodeposition Of Ruo2 Layers On Tio2 Nanotube Array Toward Co2 Electroreduction, Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai

Journal of Electrochemistry

RuO2/TiO2 composite materials have multitude of electrocatalytic applications including but not limited to CO2 reduction reaction (CO2RR). RuO2/TiO2 electrodes were previously prepared by repetitive coating and thermal decomposition (TD) of a Ru(III) precursor solution on Ti substrate. In this work, electrochemical potential cycling is applied to deposit amorphous RuO2 (α-RuO2) layers onto TiO2 nanotube array (TNA) (RuO2CV/TNA) preformed on Ti foil. SEM, GIXRD, and voltammetry are applied to characterize the structures of the resulting RuO2CV/TNA. Ru loading on the RuO2 …


Direct Electrochemistry Of Glucose Oxidase Based On Ws2 Quantum Dots And Its Biosensing Application, Chen-Lu Li, Hua-Ping Peng, Zhong-Nan Huang, Yi-Lun Sheng, Pei-Wen Wu, Xin-Hua Lin Feb 2017

Direct Electrochemistry Of Glucose Oxidase Based On Ws2 Quantum Dots And Its Biosensing Application, Chen-Lu Li, Hua-Ping Peng, Zhong-Nan Huang, Yi-Lun Sheng, Pei-Wen Wu, Xin-Hua Lin

Journal of Electrochemistry

In this study, a novel electrochemical glucose biosensor has been developed by immobilizing glucose oxidase (GOx) on tungsten disulfide quantum dots (WS2 QDs) on the surface of glassy carbon electrode (GCE). Transmission electron microscopy, UV-vis spectroscopy and cyclic voltammetry were employed to characterize the morphology, structure, and electrochemical behaviors of the as-prepared WS2 QDs and the biofilm modified electrode. The results suggested that the WS2 QDs could accelerate the electron transfer between the electrode and the immobilized enzyme, which enabled the direct electrochemistry of GOx without any electron mediator. Besides, the immobilized GOx in WS2 QDsfilm …


Aligning Electronic Energy Levels On The Anatase Tio2(101) Surface, Jun-Jie Zhao, Jun Cheng Feb 2017

Aligning Electronic Energy Levels On The Anatase Tio2(101) Surface, Jun-Jie Zhao, Jun Cheng

Journal of Electrochemistry

As one of the most commonly-used materials for photocatalysis and solar energy conversion, titanium dioxide (TiO2) has been extensively studied for more than 40 years. Its photoelectrochemical activity crucially depends on the band positions at the interface. In this work, the valence band maximum (VBM) and conduction band minimum (CBM) of a model TiO2 surface are computed using the standard work function method at the level of Perdew-Burke-Ernzerhof (PBE) density functional, which are then converted to the scale of the standard hydrogen electrode (SHE) by subtracting the absolute SHE potential. Comparing with the rutile TiO2(110) …


Effect Of Pressure On Ion Selectivity In Biomimetic Nanopores With Ph-Tunable Polyelectrolyte Brushes, Hui-Xia Shan, Zhen-Ping Zeng, Li-Xian Ye, Feng Shu Feb 2017

Effect Of Pressure On Ion Selectivity In Biomimetic Nanopores With Ph-Tunable Polyelectrolyte Brushes, Hui-Xia Shan, Zhen-Ping Zeng, Li-Xian Ye, Feng Shu

Journal of Electrochemistry

Biomimetic ionic channels of synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have significant application potentials for active transport control of ions, fluids, and bioparticles on the nanoscale. Ion selectivity is an important phenomenon of ion transport in nanofluidic devices, which has great theoretical significance and practical values. We propose a pressure control scheme to control the ion selectivity in biomimetic nano-systems with pH-tunable PE brushes. Effects of the solution properties (i.e., pH and background salt concentration), the applied voltage and pressure on ion selectivity are comprehensively investigated. The results show that ion selectivity is sensitive to pressure. Unlike the …