Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Development Of Nano-Zro2 Reinforced Self-Flowing Low And Ultra Low Cement Refractory Castables, Cem Gogtas Dec 2012

Development Of Nano-Zro2 Reinforced Self-Flowing Low And Ultra Low Cement Refractory Castables, Cem Gogtas

Theses and Dissertations

The main goal of this research is to develop high strength high toughness nano-ZrO2 reinforced self flow low cement (5%) and ultra low cement (3 and 1%) castables based on tabular alumina. In processing these castables, the Andreassen model was used to obtain optimum self flow properties in both, low and ultra low castables. The castables thus produced were fired at 110 and 1000, 1300 and 1500oC and the phases obtained were investigated by X-ray diffraction (XRD) including energy dispersive X-ray (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition, the other castable properties …


Investigation Of Band Bending In N- And P-Type Gan, Michael Foussekis Apr 2012

Investigation Of Band Bending In N- And P-Type Gan, Michael Foussekis

Theses and Dissertations

This dissertation details the study of band bending in n- and p-type GaN samples with a Kelvin probe utilizing different illumination geometries, ambients (air, oxygen, vacuum 10-6 mbar), and sample temperatures (77 – 650 K). The Kelvin probe, which is mounted inside an optical cryostat, is used to measure the surface potential. Illumination of the GaN surface with band-to-band light generates electron-hole pairs, which quickly separate in the depletion region due to a strong electric field caused by the near-surface band bending. The charge that is swept to the surface reduces the band bending and generates a surface photovoltage (SPV). …


Field Emission Of Thermally Grown Carbon Nanostructures On Silicon Carbide, Jonathon M. Campbell Mar 2012

Field Emission Of Thermally Grown Carbon Nanostructures On Silicon Carbide, Jonathon M. Campbell

Theses and Dissertations

CNTs are known to be excellent field emitter due to their unique physical and electrical properties. Because of their semi-metallic nature, CNT do not suffer the thermal runaway found in metallic emitters, and their near one-dimension shape make them an ideal emission sources. CNTs growth by thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT grow in a very dense carpet. This very dense CNT carpet comes under the affect of field emission screening effects which dampen the field emission. In this thesis, silicon carbide …