Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Nanoscience and Nanotechnology

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen May 2023

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin Jan 2023

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain May 2022

Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain

Theses and Dissertations

Near-field scanning optical microscopy (NSOM) merges scanning probe technology with the power of high-resolution optical microscopy and provides a natural view into the nanoworld. NSOM requires tapered probes with subwavelength optical apertures and wide cone angles to efficiently channel the illumination light to the tip apex so that it can acquire optical images beyond the diffraction limit. Tapered probes with a range of cone angles can be fabricated through chemical etching of optical fibers using hydrofluoric acid (HF) by varying the etching time. Apart from their use for NSOM imaging, such optical probes can also be transformed into nanosensors by …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Potential For On-Site, Prosecutorial Evidence From Drug Residues Collected On Plasmonic Paper: A Pilot Study For Sers-Psi-Ms, Daniel S. Burr Jul 2019

Potential For On-Site, Prosecutorial Evidence From Drug Residues Collected On Plasmonic Paper: A Pilot Study For Sers-Psi-Ms, Daniel S. Burr

Theses and Dissertations

Given the potential impact of improvements to on-site drug testing, as well as recent, successful displays of paper spray ionization mass spectrometry (PSI-MS) in this regard, this thesis pilots the implementation of Raman spectroscopy as a compliment to MS for field-based confirmatory drug testing. Surface enhanced Raman scattering (SERS) is utilized for applications to trace detection. Two-tiered analysis of individual drug samples is enabled using triangularly-cut plasmonic papers, from which both SERS and PS-MS analysis may be performed. Several drug compounds, representative of traditional and emerging drug types, are examined by these techniques, both separately and as a fully integrated, …


Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams Jan 2017

Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams

Theses and Dissertations

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Functional Organic Nanomaterials, Ryan R. Kohlmeyer May 2013

Functional Organic Nanomaterials, Ryan R. Kohlmeyer

Theses and Dissertations

π-Conjugated polymers have a wide range of applications such as photovoltaics, light-emitting diodes, and sensors. To gain a better understanding of these systems, monodisperse oligomers can be used as a more simplistic model to generate predictive structural and physical properties of corresponding polymers. A divergent/convergent synthetic approach to synthesis of monodisperse π-conjugated oligomers has been developed. These well-defined, thiophene-containing molecular building blocks have been successfully coupled to a ferrocene hinge, which has been found to be highly efficient in the transport of gold atoms using a gold scanning tunneling microscopy tip.

Carbon nanotubes (CNTs) represent a rare class of materials, …