Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan Aug 2017

Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

As transistors get smaller, we are achieving record levels of memory density. However, there is a limit to how small transistors can be made before their functionality breaks down. Thus alternatives to traditional transistor technology are needed. The two such technologies we examined are: resistance switching devices, which reversibly grow metal filaments through a dielectric, and two-dimensional transistors, which are capable of breaking through the scalability limit of traditional transistors. In order to design resistance switching devices which create filaments with some level of consistency, the dynamics of the filament formation need to be explored. Herein we model this process ...


Implementing The ‘Frozen Potential’ Approach On Adept To Analyze Thin Film Solar Cells, Abhirit Kanti, Raghu Vamsi Krishna Chavali, Mark S. Lundstrom Phd, Muhammad A. Alam Phd Aug 2014

Implementing The ‘Frozen Potential’ Approach On Adept To Analyze Thin Film Solar Cells, Abhirit Kanti, Raghu Vamsi Krishna Chavali, Mark S. Lundstrom Phd, Muhammad A. Alam Phd

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thin film solar cells have higher absorption coefficients than traditional Silicon solar cells. This means that lesser material is required to produce the same power output for a given intensity of solar illumination. As a result, they are less expensive, easier to install and have a wider range of applications. Analyzing the performance of cells requires separating the current into the photocurrent and the injection current based on the ‘Superposition Principle’. For thin film solar cells, this cannot be done using the conventional method. This is because these components are interdependent, and so modeling one’s behavior requires understanding the ...


Development Of A Nanomanufacturing Process To Produce Atomically Thin Black Phosphorus, Andrew Stephens, Zhe Luo, Xianfan Xu Aug 2014

Development Of A Nanomanufacturing Process To Produce Atomically Thin Black Phosphorus, Andrew Stephens, Zhe Luo, Xianfan Xu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Atomically thin black phosphorus (phosphorene) has both unique and desirable properties that differ from bulk black phosphorus. Unlike graphene, phosphorene has a bandgap, which makes it potentially useful for applications in the next generation of transistors. Large-scale applications of phosphorene, like other 2D materials, are limited by current production methods. The most common method of making phosphorene is mechanical exfoliation, which can only produce small and irregular quantities. In this work we investigate a top-down method of producing phosphorene by using a scanning ultrafast laser to thin black phosphorus flakes. Because the bandgap of phosphorene increases as layers are removed ...


Assessing The Mvs Model For Nanotransistors, Siyang Liu, Xingshu Sun, Mark S. Lundstrom Oct 2013

Assessing The Mvs Model For Nanotransistors, Siyang Liu, Xingshu Sun, Mark S. Lundstrom

The Summer Undergraduate Research Fellowship (SURF) Symposium

A simple semi-empirical compact MOSFET model has been developed, which is called MIT virtual source (MVS) model. Compare to other model used in industry, MVS model requires only a few parameters, most of which can be directly obtained from experiment, and produce accurate results. One aim of this paper is to test the applicability of the MVS model to transistor made from MoS2 rather than silicon. Another target is to determine the sustainability of the MVS model under different transistor tests. To achieve these goals, the MVS model will be used to fit the experimental data on MoS2 ...