Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson Apr 2015

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson

Open Access Dissertations

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation.^ The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor ...


Investigations Of Carbon Nanotube Catalyst Morphology And Behavior With Transmission Electron Microscopy, Sammy M. Saber Apr 2015

Investigations Of Carbon Nanotube Catalyst Morphology And Behavior With Transmission Electron Microscopy, Sammy M. Saber

Open Access Dissertations

Carbon nanotubes (CNTs) are materials with significant potential applications due to their desirable mechanical and electronic properties, which can both vary based on their structure. Electronic applications for CNTs are still few and not widely available, mainly due to the difficulty in the control of fabrication. Carbon nanotubes are grown in batches, but despite many years of research from their first discovery in 1991, there are still many unanswered questions regarding how to control the structure of CNTs. This work attempts to bridge some of the gap between question and answer by focusing on the catalyst particle used in common ...


Freezing-Induced Deformation Of Biomaterials In Cryomedicine, Altug Ozcelikkale Apr 2015

Freezing-Induced Deformation Of Biomaterials In Cryomedicine, Altug Ozcelikkale

Open Access Dissertations

Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these ...


Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West Jan 2015

Novel Techniques For Quasi Three-Dimensional Nanofabrication Of Transformation Optics Devices, Paul R. West

Open Access Dissertations

Current nanofabrication is almost exclusively limited to top-down, two-dimensional techniques. As technology moves more deeply into the nano-scale regime, fabrication of new devices with quasi three-dimensional geometries shows great potential. One excellent example of an emerging field that requires this type of non-conformal 3D fabrication technique is the field of Transformation Optics. This field involves transforming and manipulating the optical space through which light propagates. Arbitrarily manipulating the optical space requires advanced fabrication techniques, which are not possible with current two-dimensional fabrication technologies. One step toward quasi three-dimensional nanofabrication involves employing angled deposition allowing new growth mechanisms, and enabling a ...