Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite As An Efficient Oxygen Reduction Reaction Catalyst And Supercapacitor Material, Shaikh Parwaiz, Kousik Bhunia, Ashok Kumar Das, Mohammad Mansoob Khan Dr, Debabrata Pradhan Aug 2017

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite As An Efficient Oxygen Reduction Reaction Catalyst And Supercapacitor Material, Shaikh Parwaiz, Kousik Bhunia, Ashok Kumar Das, Mohammad Mansoob Khan Dr, Debabrata Pradhan

Dr. Mohammad Mansoob Khan

 Design and development of highly active and durable oxygen reduction reaction (ORR) catalyst to replace Pt- and Pt-based materials are present challenges in fuel cell research including direct methanol fuel cells (DMFC). The methanol crossover and its subsequent oxidation at the cathode is another unwanted issue that reduces the efficiency of DMFC. Herein we report cobalt-doped ceria (Co-CeO2) as a promising electrocatalyst with competent ORR kinetics mainly through a four-electron reduction pathway, and it surpasses Pt/C by a great margin in terms of stability and methanol tolerance. The Co-CeO2 nanoparticles of diameter 4–7 nm were uniformly …


Highly Visible Light Active Ag@Zno Nanocomposites Synthesized By Gel-Combustion Route, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho Aug 2014

Highly Visible Light Active Ag@Zno Nanocomposites Synthesized By Gel-Combustion Route, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly visible light active 1% and 3% Ag@ZnO nanocomposites were synthesized via a gel combustion route using citric acid as a fuel. The formation of the nanocomposites with enhanced properties was confirmed using a range of characterization techniques, photocatalysis and photoelectrochemical studies. Compared to the pristine ZnO nanoparticles, the Ag@ZnO nanocomposites exhibited enhanced visible light photocatalytic activity for the degradation of methylene blue and photoelectrochemical response. A mechanism was proposed to account for the photocatalytic activities of the Ag@ZnO nanocomposite that showed the surface plasmon resonance (SPR) of Ag is an effective way of enhancing the visible light photocatalytic activities.


Biogenic Fabrication Of Au@Ceo2 Nanocomposite With Enhanced Visible Light Activity, Mohammad Mansoob Khan Dr, S. A. Ansari, M. O. Ansari, B. K. Min, J Lee, M. H. Cho Apr 2014

Biogenic Fabrication Of Au@Ceo2 Nanocomposite With Enhanced Visible Light Activity, Mohammad Mansoob Khan Dr, S. A. Ansari, M. O. Ansari, B. K. Min, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

This study reports a biogenic approach to the synthesis of Au@CeO2 nanocomposite using electrochemically active biofilms (EABs) in water under normal pressure and 30 °C. This work presents the results of extensive morphological, structural, optical, visible light photoelectrochemical and photocatalytic studies of Au@CeO2 nanocomposite. The presence of a large number of interfaces between Au nanoparticles and CeO2 for charge transfer is believed to play a key role in enhancing the optical and visible light photoelectrochemical and photocatalytic performance of Au@CeO2 nanocomposite. The enhanced visible light degradation of methyl orange and methylene blue by Au@CeO2 nanocomposite was much higher than that …


Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho Apr 2014

Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting graphene/polyaniline (GN@Pani) nanocomposite was prepared by the in-situ oxidative polymerization of aniline in the presence of GN and the surfactant, cetyltrimethylammonium bromide (CTAB). The micellar structure of CTAB assisted both, the formation of GN@Pani tubules and the dispersion of GN. Sheet-like GN was distributed uniformly in the Pani matrix, leading to high electrical conductivity because of the π-π interactions between Pani and GN. Studies of the thermoelectrical behavior using isothermal and cyclic aging techniques showed that GN@Pani possessed a high combination of electrical conductivity and thermal stability, even beyond 150°C. GN@Pani was used as cathode active material in …


Mixed Culture Electrochemically Active Biofilms And Their Microscopic And Spectroelectrochemical Studies, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, J. Lee, M. H. Cho Feb 2014

Mixed Culture Electrochemically Active Biofilms And Their Microscopic And Spectroelectrochemical Studies, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Mixed culture electrochemically active biofilms (EABs) were developed on carbon paper using a sludge with mixed culture bacteria for microscopic and pectroelectrochemical studies because a naturally mixed culture bacterial strain is more applicable than a pure culture strain. EAB development was confirmed by microbial fuel cells (MFCs) by obtaining a constant increase in potential (∼0.36 V). Microscopic and spectroscopic studies showed that a mixed culture EABs formed on the support. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, indicated that the EABs could be source of electrons and used effectively for …


Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho Jan 2014

Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting nanocomposite film of polyaniline (Pani) with graphene (GN) was prepared by incorporating GN nanoplatelets in Pani matrix, followed by sulfonating it with fuming sulfuric acid. Sheet-like GN nanoplatelets were distributed uniformly in a Pani matrix, leading to high electrical conductivity due to π-π interaction between sulfonated Pani (s-Pani) and GN. Studies of the thermoelectrical behavior and ammonia-sensing behavior on GN@s-Pani showed high DC electrical conductivity retention under ageing conditions as well as excellent reproducible sensing response towards ammonia vapor in contrast to acid-protonated Pani.


Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho Dec 2013

Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were …


Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Dec 2013

Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

The development of coupled photoactive materials (metal/semiconductor) has resulted in significant advancements in heterogeneous visible light photocatalysis. This work reports the novel biogenic synthesis of visible light active Ag–ZnO nanocomposite for photocatalysis and photoelectrode using an electrochemically active biofilm (EAB). The results showed that the EAB functioned as a biogenic reducing tool for the reduction of Ag+, thereby eliminating the need for conventional reducing agents. The as-prepared Ag–ZnO nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic experiments showed that the Ag–ZnO nanocomposite possessed excellent visible light photocatalytic activity …