Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Biomedical Engineering and Bioengineering

Layer-by-layer

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Ultrasonication Assisted Layer-By-Layer Technology For The Preparation Of Multi-Functional Anticancer Drugs Paclitaxel And Lapatinib, Xingcai Zhang Jan 2013

Ultrasonication Assisted Layer-By-Layer Technology For The Preparation Of Multi-Functional Anticancer Drugs Paclitaxel And Lapatinib, Xingcai Zhang

Doctoral Dissertations

In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs.

In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for ...


Surface Morphology Of Platelet Adhesion Influenced By Activators, Inhibitors And Shear Stress, Melanie Groan Watson Oct 2010

Surface Morphology Of Platelet Adhesion Influenced By Activators, Inhibitors And Shear Stress, Melanie Groan Watson

Doctoral Dissertations

Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions.

Results from two studies ...