Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis Of Metal Oxide Surfaces And Interfaces With Crystallographic Control Using Solid-Liquid-Vapor Etching And Vapor-Liquid-Solid Growth, Beth S. Guiton, Lei Yu Jun 2019

Synthesis Of Metal Oxide Surfaces And Interfaces With Crystallographic Control Using Solid-Liquid-Vapor Etching And Vapor-Liquid-Solid Growth, Beth S. Guiton, Lei Yu

Chemistry Faculty Patents

The present invention provides integrated nanostructures comprising a single-crystalline matrix of a material A containing aligned, single-crystalline nanowires of a material B, with well-defined crystallographic interfaces are disclosed. The nanocomposite is fabricated by utilizing metal nanodroplets in two subsequent catalytic steps: solid-liquid-vapor etching, followed by vapor-liquid-solid growth. The first etching step produces pores, or “negative nanowires” within a single-crystalline matrix, which share a unique crystallographic direction, and are therefore aligned with respect to one another. Further, since they are contained within a single, crystalline, matrix, their size and spacing can be controlled by their interacting strain fields, and the array ...


Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang May 2019

Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang

Chemistry Faculty Publications

Rigid three-dimensional (3D) polycyclic aromatic hydrocarbons (PAHs), in particular 3D nanographenes, have garnered interest due to their potential use in semiconductor applications and as models to study through-bond and through-space electronic interactions. Herein we report the development of a novel 3D-symmetric rylene imide building block, triperyleno[3,3,3]propellane triimides (6), that possesses three perylene monoimide subunits fused on a propellane. This building block shows several promising characteristics, including high solubility, large π-surfaces, electron-accepting capabilities, and a variety of reactive sites. Further, the building block is compatible with different reactions to readily yield quasi-D3h symmetric nanostructures (9 ...


Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt Sep 2018

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address ...


Oxidation Of N-Doped Multiwalled Carbon Nanotubes And Formation Of Discontinuous Spiraled Carbon Nanoribbons, Aman Preet Kaur, Mark S. Meier, Rodney Andrews, Dali Qian Jun 2018

Oxidation Of N-Doped Multiwalled Carbon Nanotubes And Formation Of Discontinuous Spiraled Carbon Nanoribbons, Aman Preet Kaur, Mark S. Meier, Rodney Andrews, Dali Qian

Chemistry Faculty Publications

The effects of five commonly used wet chemical oxidations were studied for the extent of oxidation of graphitized nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs). KMnO4/ H2SO4 was the most potent oxidant, as it produced the highest fraction of oxygen-containing functional groups. Electron microscopy studies showed that the treatment of annealed N-MWCNTs (G-N-MWCNTs) with H2SO4/HNO3 and H2SO4/KMnO4 mixtures leads to interesting spiraled ribbon textures. A structural model, involving the stacking of coiled subunits to form a discontinuous carbon nanoribbon rather than a continuous ribbon is proposed to explain ...


Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang Apr 2018

Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang

Plant and Soil Sciences Faculty Publications

Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United ...


Dynamics Of Singlet Fission And Electron Injection In Self-Assembled Acene Monolayers On Titanium Dioxide, Natalie A. Pace, Dylan H. Arias, Devin B. Granger, Steven Christensen, John E. Anthony, Justin C. Johnson Mar 2018

Dynamics Of Singlet Fission And Electron Injection In Self-Assembled Acene Monolayers On Titanium Dioxide, Natalie A. Pace, Dylan H. Arias, Devin B. Granger, Steven Christensen, John E. Anthony, Justin C. Johnson

Chemistry Faculty Publications

We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process ...


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts ...


Catalyzed Synthesis Of Zinc Clays By Prebiotic Central Metabolites, Marcelo I. Guzman, Ruixin Zhou, Kaustuv Basu, Hyman Hartman, Christopher J. Matocha, S. Kelly Sears, Hajatollah Vali Apr 2017

Catalyzed Synthesis Of Zinc Clays By Prebiotic Central Metabolites, Marcelo I. Guzman, Ruixin Zhou, Kaustuv Basu, Hyman Hartman, Christopher J. Matocha, S. Kelly Sears, Hajatollah Vali

Chemistry Faculty Publications

How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life. While prebiotic reactions from the rTCA cycle were accomplished via photochemistry on semiconductor minerals, the synthesis of clays was demonstrated at low temperature and ambient pressure catalyzed by oxalate. Herein, the crystallization of clay minerals is catalyzed by succinate, an example of a photoproduced intermediate from central metabolism. The experiments connect the synthesis of sauconite, a model for clay minerals, to prebiotic photochemistry. We report the temperature, pH, and concentration dependence ...


Recent Advances On Iron Oxide Magnetic Nanoparticles As Sorbents Of Organic Pollutants In Water And Wastewater Treatment, Angela M. Gutierrez, Thomas D. Dziubla, J. Zach Hilt Mar 2017

Recent Advances On Iron Oxide Magnetic Nanoparticles As Sorbents Of Organic Pollutants In Water And Wastewater Treatment, Angela M. Gutierrez, Thomas D. Dziubla, J. Zach Hilt

Superfund Research Center Faculty Publications

The constant growth in population worldwide over the past decades continues to put forward the need to provide access to safe, clean water to meet human needs. There is a need for cost-effective technologies for water and wastewater treatment that can meet the global demands and the rigorous water quality standards and at the same maximizing pollutant efficiency removal. Current remediation technologies have failed in keeping up with these factors without becoming cost-prohibitive. Most recently, nanotechnology has been sought as the best alternative to increase access to water supplies by remediating those already contaminated and offering ways to access unconventional ...


Single Molecule-Level Study Of Donor-Acceptor Interactions And Nanoscale Environment In Blends, Nicole Quist, Rebecca Grollman, Jeremy Rath, Alex Robertson, Michael Haley, John E. Anthony, Oksana Ostroverkhova Feb 2017

Single Molecule-Level Study Of Donor-Acceptor Interactions And Nanoscale Environment In Blends, Nicole Quist, Rebecca Grollman, Jeremy Rath, Alex Robertson, Michael Haley, John E. Anthony, Oksana Ostroverkhova

Chemistry Faculty Publications

Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D ...


Deconvolving The Steps To Control Morphology, Composition, And Structure, In The Synthesis Of High-Aspect-Ratio Metal Oxide Nanomaterials, Lei Yu Jan 2017

Deconvolving The Steps To Control Morphology, Composition, And Structure, In The Synthesis Of High-Aspect-Ratio Metal Oxide Nanomaterials, Lei Yu

Theses and Dissertations--Chemistry

Metal oxides are of interest not only because of their huge abundance but also for their many applications such as for electrocatalysts, gas sensors, diodes, solar cells and lithium ion batteries (LIBs). Nano-sized metal oxides are especially desirable since they have larger surface-to-volume ratios advantageous for catalytic properties, and can display size and shape confinement properties such as magnetism. Thus, it is very important to explore the synthetic methods for these materials. It is essential, therefore, to understand the reaction mechanisms to create these materials, both on the nanoscale, and in real-time, to have design control of materials with desired ...


Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome Jan 2014

Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome

Theses and Dissertations--Chemistry

Due to their relative chemical stability and ubiquity in the environment, chlorinated organic contaminants such as polychlorinated biphenyls (PCBs) pose significant health risks and enduring remediation challenges. Engineered nanoparticles (NPs) provide a novel platform for sensing/remediation of these toxicants, in addition to the growing use of NPs in many industrial and biomedical applications, but there remains concern for their potential long-term health effects. Research highlighted herein also represents a transdisciplinary approach to address human health challenges associated with exposure to PCBs and NPs. The objectives of this dissertation research are two-fold, 1) to develop effective methods for capture/sensing ...


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit the ...


The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi Jan 2013

The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi

Theses and Dissertations--Pharmacy

Liposomal delivery systems hold considerable promise for improvement of cancer therapy provided that critical formulation design criteria can be met. The main objective of the current project was to enable quality by design in the formulation of liposomal delivery systems by developing comprehensive, mechanism-based mathematical models of drug loading, binding and release kinetics that take into account not only the therapeutic requirement but the physicochemical properties of the drug, the bilayer membrane, and the intraliposomal microenvironment.

Membrane binding of the drug affects both drug loading and release from liposomes. The influence of bilayer composition and phase structure on the partitioning ...


Transformations, Bioavailability And Toxicity Of Manufactured Zno Nanomaterials In Wastewter, Sewwandi Rathnayake Jan 2013

Transformations, Bioavailability And Toxicity Of Manufactured Zno Nanomaterials In Wastewter, Sewwandi Rathnayake

Theses and Dissertations--Plant and Soil Sciences

In order to properly evaluate the ecological and human health risks of ZnO Manufactured nanomaterials (MNMs) released to the environment, it is critical to understand the likely transformation products in the wastewater treatment process and in soils receiving biosolids. To address this critical knowledge gap, we examined the transformation reactions of 30 nm ZnO MNMs in single component and multi-component systems, with phosphate and natural organic matter (NOM). We also assessed the influence of nano ZnO transformation on the bioavailability, and toxicity of ZnO transformation products to Triticum aestivum. The data revealed that ZnO MNMs react with phosphate at concentrations ...


Investigations Of Oxidative Stress Effects And Their Mechanisms In Rat Brain After Systemic Administration Of Ceria Engineered Nanomaterials, Sarita S. Hardas Jan 2012

Investigations Of Oxidative Stress Effects And Their Mechanisms In Rat Brain After Systemic Administration Of Ceria Engineered Nanomaterials, Sarita S. Hardas

Theses and Dissertations--Chemistry

Advancing applications of engineered nanomaterials (ENM) in various fields create the opportunity for intended (e.g. drug and gene delivery) or unintended (e.g. occupational and environmental) exposure to ENM. However, the knowledge of ENM-toxicity is lagging behind their application development. Understanding the ENM hazard can help us to avoid potential human health problems associated with ENM applications as well as to increase their public acceptance. Ceria (cerium [Ce] oxide) ENM have many current and potential commercial applications. Beyond the traditional use of ceria as an abrasive, the scope of ceria ENM applications now extends into fuel cell manufacturing, diesel ...