Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Graduate Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties. …


Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin May 2017

Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin

Graduate Theses and Dissertations

This research focuses on the development of shape-controlled synthesis of Cu NM, Cu-based bimetallic and trimetallic nanostructures, and their electrocatalytic properties for methanol oxidation reaction (MOR). Copper nanomaterials (Cu NM) with specific surface facets can tailor their catalytic activity. Understanding reagents responsible for Cu NM growth is important for morphology-controlled synthesis of the nanostructures. This research studies the halide influence on Cu NM growth and morphology in an oil-based synthesis. The morphology of the Cu NM varies with the halide type (i.e., Cl-, Br-, I-), and the halide concentration. Additionally, the type of Cu precursor also influenced the morphology of …


Surface Modification Of Noble Metal Nanostructures Toward Biomedical Applications, Samir V. Jenkins Jul 2015

Surface Modification Of Noble Metal Nanostructures Toward Biomedical Applications, Samir V. Jenkins

Graduate Theses and Dissertations

Noble metal nanostructures have seen a steady increase in biomedical application over the last several decades; new diagnostic and therapeutic modalities are under intense investigation. Many of these applications are possible because of post-synthetic modifications to the particle surface. These modifications take a variety of forms and can significantly affect the pharmacokinetics of these particles. In this work, various surface modifications were investigated. Particle agglomeration, which occurs when particle surfaces remain in contact, can significantly affect the toxicity and efficacy of a nanomedicine. Darkfield microscopy and single-particle ICP-MS were developed as complementary methods to detect agglomeration in blood, with the …


Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma May 2015

Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma

Graduate Theses and Dissertations

Near-infrared (NIR) responsive nanoparticles (NPs) like gold nanorods (GNRs) are important in biomedical fields because of their transparency for biological tissues. Although GNRs are sought after as contrast agents for theranostics in cancer studies, capping ligands like cetyltrimethylammonium bromide (CTAB) for the GNR synthesis are toxic for biological tissues. The need for an alternative to toxic GNRs is of interest to alleviate the problem.

This work aimed to optimize the synthesis of NIR responsive nanosphere composites (NSCs) by inertial force (g-force) using colloidal gold NPs as model, elucidate the mechanism for the NSC formation, and study their detailed physicochemical characteristics. …


Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo May 2014

Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo

Graduate Theses and Dissertations

Colloidal semiconductor nanocrystals (quantum dots) have received a great deal of attention due to their superior size tunable properties and promising applications in many areas. Some of the most practical areas of their applications include light emitting diodes (LED), photovoltaic and biological studies. Synthetic methods of these crystals is becoming more established with new strategies being reported every now and then. However, quantitative studies connecting the processes at the interface, namely core-ligand, core-shell and shell-shells, to the overall quantum dots fluorescence properties are not well understood. Specifically for cores, relating surface-atoms interactions, solvents, ligands nature, density and functional groups on …


Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li Aug 2012

Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li

Graduate Theses and Dissertations

The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring the semiconductor nanocrystals. Numerous recipes were developed for the preparation of colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to the lack of thorough understanding to those systems, the synthesis chemistry is still on the empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model system to investigate its molecular mechanism and formation process, ODE was identified as the reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature synthesis methods developed. In this model system, we not only proved …


New Interfacial Nanochemistry On Sensory Bioscaffold-Membranes Of Nanobelts, Feng Chen May 2011

New Interfacial Nanochemistry On Sensory Bioscaffold-Membranes Of Nanobelts, Feng Chen

Graduate Theses and Dissertations

Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface …