Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan May 2021

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan

Graduate Theses and Dissertations

Friction tests are a beneficial means to analyze the tribological characteristics and advantages of materials and textured surfaces. However, the selected test parameters can significantly influence the results. This work explores the significance of the friction testing parameters on the frictional performances of core-shell nanostructure-textured surfaces (CSNTSs). Several applied normal loads (10 μN, 100 μN, and 500 μN) and diamond counterface indenter tip radii (1 μm, 5 μm, and 20 μm) were selected for the testing of Al/diamond-like-carbon (DLC) and Al/amorphous silicon (a-Si) CSNTSs. The measured friction values of the CSNTSs were then compared to a matching Al/DLC film and …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck May 2018

A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck

Mechanical Engineering Undergraduate Honors Theses

Nanostructure-textured surfaces can reduce friction and increase the reliability of micro- and nanoelectromechanical systems (NEMS/MEMS). For MEMS incorporating moving parts, the fatigue properties of nanostructures pose a challenge to their reliability in long-term applications. In this study, the fatigue behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), bare hemispherical Al nanodots, and a flat Al/a-Si layered thin film have been studied using nanoindentation and nano-scale dynamic mechanical analysis (nano-DMA) techniques. Fatigue testing with nano-DMA shows that the deformation resistance of CSNs persists through 5.0 × 104 loading cycles at estimated contact pressures greater than 15 GPa. When the a-Si shell …


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …


Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson Dec 2014

Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson

Graduate Theses and Dissertations

Current solar panel technologies require a sheet of glass to serve as both mechanical support and to protect the cells from the environment. The reflection from the glass sheet can reflect up to 8% of the incident light, reducing the power output of the panel. Antireflective coatings can be used to allow more light to enter the panel to be converted into usable electricity. However, no solid thin film materials exhibit a low enough index of refraction to serve as antireflective coatings for common solar glass. The main goal of this research was to investigate the self-cleaning, antifogging, and antireflective …


Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman Aug 2014

Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman

Graduate Theses and Dissertations

The objectives of this work are to investigate the structure and energetic stability of different alumina (Al2O3) phases using atomistic simulation and virtual diffraction characterization. To meet these objectives, this research performs molecular statics and molecular dynamics simulations employing the reactive force-field (ReaxFF) potential to model bulk, interface, and surface structures in the θ-, γ-, κ-, and α-Al2O3 system. Simulations throughout this study are characterized using a new virtual diffraction algorithm, developed and implemented for this work, that creates both selected area electron diffraction (SAED) and x-ray diffraction (XRD) line profiles without assuming …


Design And Fundamental Understanding Of Minimum Quantity Lubrication (Mql) Assisted Grinding Using Advanced Nanolubricants, Parash Kalita May 2013

Design And Fundamental Understanding Of Minimum Quantity Lubrication (Mql) Assisted Grinding Using Advanced Nanolubricants, Parash Kalita

Graduate Theses and Dissertations

Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants …