Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Solvent Dependent Morphologies In Thiol-Ene Photopolymerization: A Facile Route To Synthesis Of Resorcinarene Nanocapsules, Zaharoula Marie Kalaitzis Oct 2009

Solvent Dependent Morphologies In Thiol-Ene Photopolymerization: A Facile Route To Synthesis Of Resorcinarene Nanocapsules, Zaharoula Marie Kalaitzis

Chemistry & Biochemistry Theses & Dissertations

Synthesis of morphologically distinct polymeric nanostructures is vital for their wide ranging applications from nanomedicine to material science. Among various polymeric nanostructures, nanocapsules in particular have attracted a lot of attention as nanoreactors and drug delivery vehicles in nanomedicine. Often, synthesis of nanocapsules is achieved by template-based approaches. A direct, template-free method for the fabrication of nanocapsules and a variety of other morphologically distinct polymeric architectures was developed. The photopolymerization of a resorcinarene thiol-ene surfactant in various solvents lead to the formation of nanocapsules, nanoparticles, fibers, distorted honeycomb-like lattices, and sheets. The progress of the polymerization reaction and the morphology …


Dc Electrokinetic Transport Of Cylindrical Cells In Straight Microchannels, Ye Ai, Ali Beskok, David T. Gauthier, Sang W. Joo, Shizhi Qian Jan 2009

Dc Electrokinetic Transport Of Cylindrical Cells In Straight Microchannels, Ye Ai, Ali Beskok, David T. Gauthier, Sang W. Joo, Shizhi Qian

Biological Sciences Faculty Publications

Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier-Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian-Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian Jan 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …