Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Louisiana Tech University

Controlled release

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Applications Of Halloysite Nanocontainers For Functional Protective Coating, Anupam Ramesh Joshi Oct 2014

Applications Of Halloysite Nanocontainers For Functional Protective Coating, Anupam Ramesh Joshi

Doctoral Dissertations

In this study we have explored the applications of halloysite clay nanotubes as a nanocontainer. Halloysite nanotubes are used as a storage unit for anticorrosion agents, flame retardants, and a dopant to extend the curing time for geopolymer composites. Halloysite is a naturally occurring clay mineral with a chemical formula of Al2Si2O 5(OH)4 ยท 2 H2O and is identical to kaolinite with the exception that it holds an additional water monolayer in its interlayered spaces. Upon heating at higher temperatures, halloysite loses the additional water monolayer, and this variant known colloquially as "meta-halloysite" has a chemical formula of Al2Si2O5 ...


Halloysite Clay Nanotubes For Controlled Delivery Of Chemically Active Agents, Elshard Abdullayev Oct 2010

Halloysite Clay Nanotubes For Controlled Delivery Of Chemically Active Agents, Elshard Abdullayev

Doctoral Dissertations

In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2].

In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe ...