Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Oscillator-Based Neuronal Modeling For Seizure Progression Investigation And Seizure Control Strategy, Wu Chen Oct 2012

Oscillator-Based Neuronal Modeling For Seizure Progression Investigation And Seizure Control Strategy, Wu Chen

Doctoral Dissertations

The coupled oscillator model has previously been used for the simulation of neuronal activities in in vitro rat hippocampal slice seizure data and the evaluation of seizure suppression algorithms. Each model unit can be described as either an oscillator which can generate action potential spike trains without inputs, or a threshold-based unit. With the change of only one parameter, each unit can either be an oscillator or a threshold-based spiking unit. This would eliminate the need for a new set of equations for each type of unit. Previous analysis has suggested that long kernel duration and imbalance of inhibitory feedback ...


Exploitation And Exploration Of Pcr In Microfluidic Systems With Gradient Temperature Environments, Ilija Pjescic Oct 2012

Exploitation And Exploration Of Pcr In Microfluidic Systems With Gradient Temperature Environments, Ilija Pjescic

Doctoral Dissertations

The main goal of the work was to establish a wholesome picture off all relevant processes for a sample-in, answer out genetic system and to integrate the whole process on a one step device from sample collection to final result. The genetic analysis process consists of ideally three steps: sample preparation, chemical reaction, and analysis. Each of the steps is different and requires a specific environment, where sample preparation might use additives, they might later interfere with the reaction itself or lead to misleading results in the analysis phase. It was found to be quite a challenging process to synchronize ...


A Nanostructured Fabry-Perot Interferometer For Label-Free Biodetection, Tianhua Zhang Jul 2012

A Nanostructured Fabry-Perot Interferometer For Label-Free Biodetection, Tianhua Zhang

Doctoral Dissertations

A polymer nanostructured Fabry-Perot interferometer (FPI) based biosensor has been developed, fabricated, and tested. Different from a conventional FPI, this nanostructured FPI has a layer of Au-coated nanopores inside its cavity. The Au-coated nanostructure layer offers significant enhancement of optical transducing signals due to the localized surface Plasmon resonance (L-SPR) effect. Compared to a traditional FPI for label-free biosensing applications, the polymer nanostructured FPI based biosensor offers increased sensing surface area, extended penetration depth of the excitation light, and amplification of optical transducing signals. Using a nanostructured FPI, measurements taken had great improvements in free spectral range (FSR), finesse, and ...


Nanowire Giant Magnetoresistance Thin Films For Magnetic Sensors, Bryan Cox Jul 2012

Nanowire Giant Magnetoresistance Thin Films For Magnetic Sensors, Bryan Cox

Doctoral Dissertations

This dissertation details a novel method to fabricate magnetic sensors using nanowire giant magnetoresistance (GMR) thin films. In 1988, Albert Fert and Peter Gr├╝nberg both independently discovered a new physical phenomenon called GMR. GMR is a quantum mechanical effect found in thin film materials that are composed of alternating nanoscale ferromagnetic and non-magnetic conductive layers. When a GMR material is in the presence of a magnetic field, a change in electrical resistance is observed. The GMR effect has been utilized to produce magnetic sensors that have been used in a variety of applications, such as computer hard drive read heads ...


Fabrication And Characterization Of Hybrid Energy Harvesting Microdevices, Zhongcheng Gong Apr 2012

Fabrication And Characterization Of Hybrid Energy Harvesting Microdevices, Zhongcheng Gong

Doctoral Dissertations

In this dissertation, a hybrid energy harvesting system based on a lead zirconate titanate (PZT) and carbon nanotube film (CNF) cantilever structure has been designed, fabricated and studied. It has the ability to harvest light and thermal radiation energy from ambient energy and convert them to electricity.

The proposed micro-scale energy harvesting device consists of a composite cantilever beam (SU-8/CNF/Pt/PZT/Pt) which is fixed on a silicon based anchor and two electrode pads for wire bonding. The CNF acts as an antenna to receive radiation energy and convert it to heat energy and then transfer to the ...


Basic Capillary Microfluidic Chip And Highly Sensitive Optical Detector For Point Of Care Application, Mingjin Yao Apr 2012

Basic Capillary Microfluidic Chip And Highly Sensitive Optical Detector For Point Of Care Application, Mingjin Yao

Doctoral Dissertations

A cost-effective and highly sensitive portable diagnostic device is needed to enable much more widespread monitoring of health conditions in disease prevention, detection, and control. Miniaturized and easy-to-operate devices can reduce the inherent costs and inefficiencies associated with healthcare testing in central laboratories. Hence, clinicians are beginning to use point of care (POC) testing and flexible clinical chemistry testing devices which are beneficial for the patient.

In our work, a low-cost and simple autonomous microfluidic device for biochemical detection was developed. The pumpless capillary system with capillary stop valves and trigger valves is fabricated on a silicon (Si) wafer and ...