Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Graphene Foam Reinforced Shape Memory Polymer Epoxy Composites, Adeyinka Idowu Oct 2019

Graphene Foam Reinforced Shape Memory Polymer Epoxy Composites, Adeyinka Idowu

FIU Electronic Theses and Dissertations

Shape memory polymer (SMP) epoxy has received growing interest due to its facile processing, low density, and high recoverable strain. Despite these positive attributes, SMP epoxy has drawbacks such as slow recovery rate, and inferior mechanical properties. The slow recovery rate restricts the use of SMP epoxy as a functional structure.

The aim of the present work is to explore the capabilities of three-dimensional (3D) graphene foam (GrF) and graphene nanoplatelet (GNP) as reinforcements in SMP epoxy to overcome their slow recovery and improve the mechanical properties. GrF and GNP based SMP epoxy composites are fabricated by mold-casting approach and …


Three-Dimensional Graphene Foam Reinforced Epoxy Composites, Leslie Embrey Mar 2017

Three-Dimensional Graphene Foam Reinforced Epoxy Composites, Leslie Embrey

FIU Electronic Theses and Dissertations

Three-dimensional graphene foam (3D GrF) is an interconnected, porous structure of graphene sheets with excellent mechanical, electrical and thermal properties, making it a candidate reinforcement for polymer matrices. GrF’s 3D structure eliminates nanoparticle agglomeration and provides seamless pathways for electron travel. The objective of this work is to fabricate low density GrF reinforced epoxy composites with superior mechanical and electrical properties and study the underlying deformation mechanisms. Dip coating and mold casting fabrication methods are employed in order to tailor the microstructure and properties. The composite’s microstructure revealed good interfacial interaction. By adding mere 0.63 wt.% GrF, flexural strength was …


Creation And Evaluation Of Polymer/Multiwall Carbon Nanotube Films For Structural Vibration Control And Strain Sensing Properties, Weiwei Lin Nov 2016

Creation And Evaluation Of Polymer/Multiwall Carbon Nanotube Films For Structural Vibration Control And Strain Sensing Properties, Weiwei Lin

FIU Electronic Theses and Dissertations

Multifunctional materials both with damping properties and strain sensing properties are very important. They promise to be more weight-efficient, and provide volume-efficient performance, flexibility and potentially, less maintenance than traditional multi-component brass-board systems.

The goal of this dissertation work was to design, synthesize, investigate and apply polyaniline/Multiwall carbon nanotube (PANI/MWCNT) and polyurethane (PU) /MWCNT composites films for structural vibration control and strain sensors using free layer damping methods and static and dynamic strain sensing test methods.

The PANI/MWCNT was made by in situ polymerization of PANI in the presence of MWCNT, then frit compression was used to make circular and …