Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo Jan 2017

Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo

Theses and Dissertations

This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 µm) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film …


Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis Jan 2017

Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis

Doctoral Dissertations

With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell …


Suspended Graphene-Based Gas Sensor With 1-Mw Energy Consumption, Jong-Hyun Kim, Qin Zhou, Jiyoung Chang Jan 2017

Suspended Graphene-Based Gas Sensor With 1-Mw Energy Consumption, Jong-Hyun Kim, Qin Zhou, Jiyoung Chang

Department of Mechanical and Materials Engineering: Faculty Publications

This paper presents NH3 sensing with ultra-low energy consumption for fast recovery and a graphene sheet based on a suspended microheater. Sensitivity and repeatability are important characteristics of functional gas sensors embedded in mobile devices. Moreover, low energy consumption is an essential requirement in flexible and stretchable mobile electronics due to their small dimension and fluctuating resistivity during mechanical behavior. In this paper, we introduce a graphene-based ultra-low power gas detection device with integration of a suspended silicon heater. Dramatic power reduction is enabled by a duty cycle while not sacrificing sensitivity. The new oscillation method of heating improves …