Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Electrical and Computer Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Nanoscience and Nanotechnology

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin Dec 2017

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin

Journal of Electrochemistry

In this work, the NiS2 nanosheets have been synthesized using Ni(OH)2 as a precursor through a sacrificial template method. The microstructure and chemical composition of as-prepared NiS2 were characterized by XRD, EDS, BET, SEM and TEM techniques. The results showed that both Ni(OH)2 and NiS2 were composed of nanoplates. The electrochemical tests revealed that NiS2 exhibited the high specific capacitance of 1067.3 F•g-1 at a current density of 1 A•g-1 and excellent rate performance. Furthermore, in order to evaluate the practical application of NiS2, an asymmetric supercapacitor, NiS2 as …


Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang Dec 2017

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

This paper describes a simple CO-assisted reduction approach for the controllable synthesis of ultrathin Pd nanowires along the one-dimensional (1D) direction. Ultrathin Pt films from one to several atomic layers were successfully decorated onto ultrathin Pd nanowires by utilizing Cu UPD deposition, and followed by in-situ redox replacement reaction of UPD Cu by Pt. The core–shell structure and composition of the Pd@Pt ultrathin nanowires have been verified using transmission electron microscopy and energy dispersive X-ray spectrometry. The core–shell Pd@Pt ultrathin nanowires exhibited comparative electrocatalytic activity and improved durability for the oxygen reduction reaction in comparison with commercial Pt black. The …


Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh Dec 2017

Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Low-temperature co-fired ceramic (LTCC), and glass fiber reinforced polymer (GFRP) printed circuit boards (PCBs) are two materials used for the packaging of electronics. The excellent mechanical and electrical properties of LTCC, combined with the ability to embed passive components offer superior radio frequency (RF) performance and device miniaturization for high-frequency applications. Due to its unique properties, LTCC provides superior performance in applications as diverse as military radar, imaging systems, advanced automotive sensing, telecommunications, and satellites. The use of LTCC in these applications has created a demand for the micromachining of holes, channels, and cavities with specific geometries and structures. Likewise, …


Synthesis, Transport, And Thermoelectric Studies Of Topological Dirac Semimetal Cd3as2 For Room Temperature Waste Heat Recovery And Energy Conversion, Tahereh A. Hosseini Dec 2017

Synthesis, Transport, And Thermoelectric Studies Of Topological Dirac Semimetal Cd3as2 For Room Temperature Waste Heat Recovery And Energy Conversion, Tahereh A. Hosseini

Theses and Dissertations

ABSTRACT

SYNTHESIS, TRANSPORT, AND THERMOELECTRIC STUDIES OF TOPOLOGICAL DIRAC SEMIMETAL CD3AS2 FOR ROOM TEMPERATURE WASTE HEAT RECOVERY AND ENERGY CONVERSION

by

The University of Wisconsin-Milwaukee, 2017

Under the Supervision of Professor Nikolai Kouklin

Rising rates of the energy consumption and growing concerns over the climate change worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the form of the heat. On this front, increasing electrical power generation through a waste heat recovery remains one of the highly promising venues of the …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber Nov 2017

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber

USF Tampa Graduate Theses and Dissertations

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in …


S41598-017-16744-0.Pdf, Zlatan Aksamija Nov 2017

S41598-017-16744-0.Pdf, Zlatan Aksamija

Zlatan Aksamija

No abstract provided.


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes. …


Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat Oct 2017

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated circuit technology …


Enhancement Of Thermoelectric Properties Of Ald Synthesized Pbte And Pbse By Phonon Engineering, Xin Chen Oct 2017

Enhancement Of Thermoelectric Properties Of Ald Synthesized Pbte And Pbse By Phonon Engineering, Xin Chen

Electrical & Computer Engineering Theses & Dissertations

Thermoelectrics is a green renewable energy technology that plays an important role in power generation due to its potential in generating electricity out of waste heat. The main challenge for the development of thermoelectrics is its low conversion efficiency. One key strategy to improve conversion efficiency is focused on reducing the thermal conductivity of thermoelectric materials. In this thesis, the novel phononic engineering concept was implemented by conformal ALD deposition of PbTe, PbSe thermoelectric films, and PbTe/PbSe nanolaminates on patterned silicon substrates in order to improve the thermoelectric performance of the thermoelectric films. The silicon substrates were lithographically patterned with …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …


Optical And Electronic Properties Of Femtosecond Laser-Induced Sulfur-Hyperdoped Silicon N+/P Photodiodes, Ting Zhang, Bohan Liu, Waseem Ahmad, Yaoyu Xuan, Xiangxiao Ying, Zhijun Liu, Zhi David Chen, Shibin Li Sep 2017

Optical And Electronic Properties Of Femtosecond Laser-Induced Sulfur-Hyperdoped Silicon N+/P Photodiodes, Ting Zhang, Bohan Liu, Waseem Ahmad, Yaoyu Xuan, Xiangxiao Ying, Zhijun Liu, Zhi David Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

Impurity-mediated near-infrared (NIR) photoresponse in silicon is of great interest for photovoltaics and photodetectors. In this paper, we have fabricated a series of n+/p photodetectors with hyperdoped silicon prepared by ion-implantation and femtosecond pulsed laser. These devices showed a remarkable enhancement on absorption and photoresponse at NIR wavelengths. The device fabricated with implantation dose of 1014 ions/cm2 has exhibited the best performance. The proposed method offers an approach to fabricate low-cost broadband silicon-based photodetectors.


Design And Validation Of A Low Cost High Speed Atomic Force Microscope, Michael Ganzer, Tien Pham Sep 2017

Design And Validation Of A Low Cost High Speed Atomic Force Microscope, Michael Ganzer, Tien Pham

Journal of Undergraduate Research at Minnesota State University, Mankato

The Atomic Force Microscope (AFM) is an important instrument in nanoscale topography, but it is expensive and slow. The authors designed an AFM to overcome both limitations. To do this, they used an Optical Pickup Unit (OPU) from a DVD player as the laser and photodetector system to minimize cost and they did not implement a vertical control loop, which maximized potential speed. Students will be able to be use this device to make nanoscale measurements and engage in micro-engineering. To prototype this idea, the authors tested an OPU with a silicon wafer and demonstrated the ability to consistently distinguish …


Effects Of Surface Modification Modes On Proton-Over-Vanadium Ion Selectivity Of Nafion®Membrane For Application In Vanadium Redox Flow Battery, Qing-Long Tan, Hai-Ning Wang, Shan-Fu Lu, Da-Wei Liang, Chun-Xiao Wu, Yan Xiang Aug 2017

Effects Of Surface Modification Modes On Proton-Over-Vanadium Ion Selectivity Of Nafion®Membrane For Application In Vanadium Redox Flow Battery, Qing-Long Tan, Hai-Ning Wang, Shan-Fu Lu, Da-Wei Liang, Chun-Xiao Wu, Yan Xiang

Journal of Electrochemistry

The effect of surface modification modes on proton-over-vanadium ion selectivity was studied by spin-coating chitosan-Phosphotungstic Acid (PWA) as a single or double layer on Nafion membrane surface. To suppress the vanadium ions permeation through the Nafion? membrane in a vanadium redox flow battery (VRFB), the single surface-modified Nafion membrane (Nafion/chitosan-PWA)S and double surface-modified Nafion membrane (Nafion/chitosan-PWA)D demonstrated a 89.9% and 92.7% reduction of vanadium ion permeability in comparison with pristine Nafion, respectively. The (Nafion/chitosan-PWA)D exhibited betterhigher selectivity between proton and vanadium ions than the (Nafion/chitosan-PWA)S at the same layer thickness. Furthermore, the columbic efficiency for the VRFB single cell based …


Density Functional Investigation On Cathode/Electrolyte Interface In Solid-State Lithium Batteries, Xuelong Wang, Ruijuan Xiao, Yong Xiang, Hong Li, Liquan Chen Aug 2017

Density Functional Investigation On Cathode/Electrolyte Interface In Solid-State Lithium Batteries, Xuelong Wang, Ruijuan Xiao, Yong Xiang, Hong Li, Liquan Chen

Journal of Electrochemistry

The rapidly expanding application of lithium ion batteries stimulates research interest on energy storage devices with higher energy density, better safety and faster charge/discharge speed. All-solid-state lithium batteries have been considered as promising candidates because of their fewer side reactions and better safety compared with conventional lithium-ion batteries with organic liquid electrolytes. Looking for well-matched electrode/electrolyte interfaces is one of the keys to ensuring good comprehensive performance of solid-state lithium batteries. In this report, with the aid of first-principles simulations, the local structure and lithium ions transportation properties of electrolyte surfaces and cathode/electrolyte interfaces are investigated. The β-Li3PS …


A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires As A Cathode Material For Sodium Ion Batteries, Guang-Rui Zhang, Li-Qiang Hu, Bao-Zhu Zhang Aug 2017

A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires As A Cathode Material For Sodium Ion Batteries, Guang-Rui Zhang, Li-Qiang Hu, Bao-Zhu Zhang

Journal of Electrochemistry

In recent years, the development of lithium ion batteries (LIBs) has been limited due to the insufficient lithium resource and increasing cost. As a promising candidate, sodium ion batteries (SIBs) with the similar electrochemical mechanism and lower cost than LIBs are developing rapidly. However, as a result of the larger radius of Na+ compared with Li+, the crystalline structures of the most electrode materials are damaged severely during the intercalation of Na+, which limits the electrochemical properties of SIBs. Thus, developing new types of electrode materials for SIBs is particularly important. Among the cathode materials, …


Interfacial Thermal Transport In Monolayer Mos2- And Graphene-Based Devices, Zlatan Aksamija, Amin Salehi-Khojin, Cameron J. Foss, Arnab K. Majee, Fatemeh Khalili-Araghi Jul 2017

Interfacial Thermal Transport In Monolayer Mos2- And Graphene-Based Devices, Zlatan Aksamija, Amin Salehi-Khojin, Cameron J. Foss, Arnab K. Majee, Fatemeh Khalili-Araghi

Zlatan Aksamija

In many device architectures based on 2D materials, a major part of the heat generated in hot-spots dissipates in the through-plane direction where the interfacial thermal resistances can significantly restrain the heat removal
capability of the device. Despite its importance, there is an enormous (1–2 orders of magnitude) disagreement in the literature on the interfacial thermal transport characteristics of MoS2 and other transition metal dichalcogenides (TMDs) (0.1–14 MW m−2 K−1). In this report, the thermal boundary conductance (TBC) across MoS2 and graphene monolayers with SiO2/Si and sapphire substrates is systematically investigated using a
custom-made electrical thermometry platform followed by 3D …


Size And Shape Distributions Of Primary Crystallites In Titania Aggregates, Eric A. Grulke, Kazuhiro Yamamoto, Kazuhiro Kumagai, Ines Häusler, Werner Österle, Erik Ortel, Vasile-Dan Hodoroaba, Scott C. Brown, Christopher Chan, Jiwen Zheng, Kenji Yamamoto, Kouji Yashiki, Nam Woong Song, Young Heon Kim, Aleksandr B Stefaniak, D. Schwegler-Berry, Victoria A. Coleman, Åsa K. Jämting, Jan Herrmann, Toru Arakawa, Woodrow W. Burchett, Joshua W. Lambert, Arnold J. Stromberg Jul 2017

Size And Shape Distributions Of Primary Crystallites In Titania Aggregates, Eric A. Grulke, Kazuhiro Yamamoto, Kazuhiro Kumagai, Ines Häusler, Werner Österle, Erik Ortel, Vasile-Dan Hodoroaba, Scott C. Brown, Christopher Chan, Jiwen Zheng, Kenji Yamamoto, Kouji Yashiki, Nam Woong Song, Young Heon Kim, Aleksandr B Stefaniak, D. Schwegler-Berry, Victoria A. Coleman, Åsa K. Jämting, Jan Herrmann, Toru Arakawa, Woodrow W. Burchett, Joshua W. Lambert, Arnold J. Stromberg

Chemical and Materials Engineering Faculty Publications

The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions …


The Efficacy Of Programming Energy Controlled Switching In Resistive Random Access Memory (Rram), David Malien Nminibapiel Jul 2017

The Efficacy Of Programming Energy Controlled Switching In Resistive Random Access Memory (Rram), David Malien Nminibapiel

Electrical & Computer Engineering Theses & Dissertations

Current state-of-the-art memory technologies such as FLASH, Static Random Access Memory (SRAM) and Dynamic RAM (DRAM) are based on charge storage. The semiconductor industry has relied on cell miniaturization to increase the performance and density of memory technology, while simultaneously decreasing the cost per bit. However, this approach is not sustainable because the charge-storage mechanism is reaching a fundamental scaling limit. Although stack engineering and 3D integration solutions can delay this limit, alternate strategies based on non-charge storage mechanisms for memory have been introduced and are being actively pursued.

Resistive Random Access Memory (RRAM) has emerged as one of the …


Characteristics And Mechanism For The Simons Electrochemical Fluorination Of Methanesulfonyl Fluoride, Wen-Lin Xu, Bao-Tong Li, Da-Wei Wang, Ya-Qiong Wang Jun 2017

Characteristics And Mechanism For The Simons Electrochemical Fluorination Of Methanesulfonyl Fluoride, Wen-Lin Xu, Bao-Tong Li, Da-Wei Wang, Ya-Qiong Wang

Journal of Electrochemistry

The characteristics and mechanism for the Simons electrochemical fluorination processes were investigated during the electrochemical fluorination of CH3SO2F to CF3SO2F. The results showed that the reaction mechanism for the electrochemical fluorination of organic compounds to organic fluorides was the same as that of chemical fluorination processes using fluorinating agents such as CoF3. The electrochemical fluorination in anhydrous HF was a heterogeneous process, and nickel fluorides on the surface of the nickel anode played the role of a mediator in the Simons process to transfer oxidation potential from the anode to …


Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen Jun 2017

Electrocatalysis Of Nanotin Dioxide In The Battery Reaction Of Zinc-Nitrobenzene, Xu-Guo Tu, Xiang-Yu Ma, Rui-Nan He, Xiao-Juan Wang, Chen Ling, Yun-Xia Sun, Song Chen

Journal of Electrochemistry

The tin dioxide (SnO2) nanoparticles were synthesized by using a simple hydrothermal route in the presence of tetrapropyl ammonium bromide (TPAB) as a surfactant. Accordingly, the titanium mesh based SnO2 catalyst electrode was prepared. The morphologies and structures of SnO2 nanostructures were characterized by scanning electron microscopy and X-ray diffraction spectrometry. The influences of reactant concentration, reaction temperature and time on the morphology of the products were investigated in detail. The electrocatalytic performance of SnO2 for the reduction of nitrobenzene with zinc was studied. Possible formation process and growth mechanism for such hierarchical SnO2 …


Realizing Full Coverage Of Stable Perovskite Film By Modified Anti-Solvent Process, Long Ji, Ting Zhang, Yafei Wang, Peng Zhang, Detao Liu, Zhi David Chen, Shibin Li May 2017

Realizing Full Coverage Of Stable Perovskite Film By Modified Anti-Solvent Process, Long Ji, Ting Zhang, Yafei Wang, Peng Zhang, Detao Liu, Zhi David Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

Lead-free solution-processed solid-state photovoltaic devices based on formamidinium tin triiodide (FASnI3) and cesium tin triiodide (CsSnI3) perovskite semiconductor as the light harvester are reported. In this letter, we used solvent engineering and anti-solvent dripping method to fabricate perovskite films. SnCl2 was used as an inhibitor of Sn4+ in FASnI3 precursor solution. We obtained the best films under the function of toluene or chlorobenzene in anti-solvent dripping method and monitored the oxidation of FASnI3 films in air. We chose SnF2 as an additive of CsSnI3 precursor solution to prevent the oxidation …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta May 2017

Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta

Mechanical Engineering Undergraduate Honors Theses

Graphene is known to be a key material for improving the performance of hydrogen sensors. High electrical conductivity, maximum possible surface area with respect to volume, and high carrier mobility are a few of the properties that make graphene ideal for hydrogen sensing applications. The problem with utilizing graphene is the difficulty in depositing uniform, thin layers onto substrate surfaces. This study examines a new method of optimizing graphene deposition by utilizing an airbrush to deposit both graphene oxide (GO) and reduced graphene oxide (rGO) onto glass substrates. The number of depositions were varied among samples to study the effect …


Comparative Studies Of Fe, Ni, Co And Their Bimetallic Nanoparticles For Electrochemical Water Oxidation, Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen Apr 2017

Comparative Studies Of Fe, Ni, Co And Their Bimetallic Nanoparticles For Electrochemical Water Oxidation, Maduraiveeran Govindhan, Brennan Mao, Aicheng Chen

Journal of Electrochemistry

The design of efficient, durable, and earth-abundant electrocatalysts via environmentally compatible strategies for the oxygen evolution reaction (OER) is a vital for energy conversion processes. Herein we report a facile approach for the fabrication of low-cost and earth abundant metal catalysts, including iron (Fe), nickel (Ni), cobalt (Co), CoNi, and CoFe nanoparticles (NPs) on titanium (Ti) substrates through a one-step electrochemical deposition. Field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) spectrocopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were employed to characterize these nanoparticles. Our electrochemical results revealed that among the five synthesized nanomaterials, the …


Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou Apr 2017

Comparison Of Oxygen Reduction Reaction Activity Of Pt-Alloy Nanocubes, Yongan Tang, Lin Dai, Shouzhong Zou

Journal of Electrochemistry

Alloying Pt with the first row non-noble transition metals has been demonstrated to increase the catalytic activity toward oxygen reduction reaction (ORR), which is the cathode reaction of the proton exchange membrane fuel cells (PEMFCs) and metal-air batteries. However, how much the ORR activity improvement comes from the alloying elements remains controversial. In this paper, the nanocubes of PtMn, PtFe, PtCo, and PtNi with the similar size and composition were prepared and their ORR activities were explored, in order to investigate the effects of alloying elements on the catalytic activity. The use of cubic shape particles minimizes the contribution to …


Novel Composites Between Nano-Structured Nickel Sulfides And Three-Dimensional Graphene For High Performance Supercapacitors, Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang Apr 2017

Novel Composites Between Nano-Structured Nickel Sulfides And Three-Dimensional Graphene For High Performance Supercapacitors, Xiaomin Wang, Huanglin Dou, Zhen Tian, Jiujun Zhang

Journal of Electrochemistry

In this paper, a three-dimensional graphene (3DG) network grown on nickel foam was employed as a template for synthesizing graphene-based composite materials of supercapacitor electrode. The composites (crystal Ni3S2 nanorods on the surface of 3DG (abbreviated as Ni3S2/3DG)) were obtained through a one-step hydrothermal reaction. The morphological and structural evolution of the Ni3S2/3DG composites were investigated by SEM, TEM, XRD and Raman spectroscopy. Detailed electrochemical characterization showed that the Ni3S2/3DG-coated electrodes exhibited both a specific capacitance as high as 1825 F·g-1 at 5 mV·s …


Electrodeposition Of Ruo2 Layers On Tio2 Nanotube Array Toward Co2 Electroreduction, Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai Apr 2017

Electrodeposition Of Ruo2 Layers On Tio2 Nanotube Array Toward Co2 Electroreduction, Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai

Journal of Electrochemistry

RuO2/TiO2 composite materials have multitude of electrocatalytic applications including but not limited to CO2 reduction reaction (CO2RR). RuO2/TiO2 electrodes were previously prepared by repetitive coating and thermal decomposition (TD) of a Ru(III) precursor solution on Ti substrate. In this work, electrochemical potential cycling is applied to deposit amorphous RuO2 (α-RuO2) layers onto TiO2 nanotube array (TNA) (RuO2CV/TNA) preformed on Ti foil. SEM, GIXRD, and voltammetry are applied to characterize the structures of the resulting RuO2CV/TNA. Ru loading on the RuO2 …


Enhanced Performance Of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped Sno2 As Electron Transport Layers, Hao Chen, Detao Liu, Yafei Wang, Chenyun Wang, Ting Zhang, Peng Zhang, Hojjatollah Sarvari, Zhi Chen, Shibin Li Mar 2017

Enhanced Performance Of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped Sno2 As Electron Transport Layers, Hao Chen, Detao Liu, Yafei Wang, Chenyun Wang, Ting Zhang, Peng Zhang, Hojjatollah Sarvari, Zhi Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical …


Electronic Properties Of A New All-Inorganic Perovskite Tlpbi3 Simulated By The First Principles, Zhao Liu, Ting Zhang, Yafei Wang, Chenyun Wang, Peng Zhang, Hojjatollah Sarvari, Zhi Chen, Shibin Li Mar 2017

Electronic Properties Of A New All-Inorganic Perovskite Tlpbi3 Simulated By The First Principles, Zhao Liu, Ting Zhang, Yafei Wang, Chenyun Wang, Peng Zhang, Hojjatollah Sarvari, Zhi Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

All-inorganic perovskites have been recognized as promising photovoltaic materials. We simulated the perovskite material of TlPbI3 using ab initio electronic structure calculations. The band gap of 1.33 eV is extremely close to the theoretical optimum value. Compared TlPbI3 with CsPbI3, the total energy (−3980 eV) of the former is much lower than the latter. The partial density of states (PDOS) of TlPbI3 shows that a strong bond exists between Tl and I, resulting in the lower total energy and more stable existence than CsPbI3.