Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2014

Discipline
Institution
Keyword
Publication
Publication Type

Articles 211 - 240 of 273

Full-Text Articles in Nanoscience and Nanotechnology

Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong Jan 2014

Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong

Ji-Huan He

The oscillatory diameter of the charged jet during the bubble electrospinning results in beads on the obtained nanofibers. We demonstrate that the applied voltage and the initial flow rate of the jet are the crucial parameters that are necessary to control morphology of the nanofibers. We also find that there is a criterion for production of smooth nanofibers without beads. The theory developed in this paper can be extended to the classical electrospinning and the blown bubble-spinning.


Fractional Calculus For Nanoscale Flow And Heat Transfer, Hong-Yan Liu, Ji-Huan He, Zheng-Biao Li Jan 2014

Fractional Calculus For Nanoscale Flow And Heat Transfer, Hong-Yan Liu, Ji-Huan He, Zheng-Biao Li

Ji-Huan He

Purpose – Academic and industrial researches on nanoscale flows and heat transfers are an area of increasing global interest, where fascinating phenomena are always observed, e.g. admirable water or air permeation and remarkable thermal conductivity. The purpose of this paper is to reveal the phenomena by the fractional calculus. Design/methodology/approach – This paper begins with the continuum assumption in conventional theories, and then the fractional Gauss’ divergence theorems are used to derive fractional differential equations in fractal media. Fractional derivatives are introduced heuristically by the variational iteration method, and fractal derivatives are explained geometrically. Some effective analytical approaches to fractional …


Connecting Research On Social Issues In Nanotechnology: The Center For Nanotechnology In Society At Arizona State University, Jan Youtie, Philip Shapira Jan 2014

Connecting Research On Social Issues In Nanotechnology: The Center For Nanotechnology In Society At Arizona State University, Jan Youtie, Philip Shapira

Philip Shapira

Central to the emergence of new research topics is the creation of a research network. This paper looks at the creation of a network of researchers of social issues in nanotechnology and the role of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) in the creation of this network. While there has been US investment in societal research on nanotechnology, a debate exists about the extent to which a research community has been created through these investments. This paper uses three approaches to examine the extent to which CNS-ASU is associated with the development of a research …


Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2014

Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Electrospinning Applications Air Filtration And Superhydrophobic Materials, Negar Ghochaghi, Adetoun Taiwo Jan 2014

Electrospinning Applications Air Filtration And Superhydrophobic Materials, Negar Ghochaghi, Adetoun Taiwo

Graduate Research Posters

Electrospinning is a widely applicable technique that generates non-woven fibers in the micro and nano range. In this project two of its applications are highlighted namely filtration media and enhancement of wettability. The first project demonstrates that electrospinning can be used to produce new fiber filtration media with controlled microstructure. The bimodal and unimodal orthogonal and random filters were made and characterized against their filtration efficiency and pressure drop. Figure of Merit (FOM) was also calculated and discussed. It is shown that the FOM increases when the electrospun fibers are arranged into alternating layers of aligned course and fine fibers. …


Nanoparticles For Multimodal In Vivo Imaging In Nanomedicine, Jaehong Key, James F. Leary Jan 2014

Nanoparticles For Multimodal In Vivo Imaging In Nanomedicine, Jaehong Key, James F. Leary

Birck and NCN Publications

While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within the organ compartments of live, anesthetized animals. By combining different imaging modalities, we can start with deep-body imaging by magnetic resonance imaging or computed tomography, and by using optical imaging, get down to the resolution required for real-time fluorescence-guided surgery.


Cnt Membrane Platforms For Transdermal Drug Delivery And Aptamer Modulated Transport, Tao Chen Jan 2014

Cnt Membrane Platforms For Transdermal Drug Delivery And Aptamer Modulated Transport, Tao Chen

Theses and Dissertations--Chemical and Materials Engineering

CNT membrane platforms are biomimetic polymeric membranes imbedded with carbon nanotubes which show fast fluid flow, electric conductivity, and the ability to be grafted with chemistry. A novel micro-dialysis probe nicotine concentration sampling technique was proposed and proved in vitro, which could greatly improve the efficiency and accuracy of future animal transdermal studies. To enhance the scope of transdermal drug delivery which was limited to passive diffusion of small, potent lipophilic drugs, a wire mesh lateral electroporation design was also proposed which could periodically disrupt the skin barrier and enhance drug flux.

It was shown that AMP binding aptamer …


Organic Ferroelectric Evaporator With Substrate Cooling And In Situ Transport Capabilities, Keith Foreman, C. Labedz, M. Shearer, Shireen Adenwalla Jan 2014

Organic Ferroelectric Evaporator With Substrate Cooling And In Situ Transport Capabilities, Keith Foreman, C. Labedz, M. Shearer, Shireen Adenwalla

Shireen Adenwalla Papers

We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum …


Experimental Development Of Advanced Air Filtration Media Based On Electrospun Polymer Fibers, Negar Ghochaghi Jan 2014

Experimental Development Of Advanced Air Filtration Media Based On Electrospun Polymer Fibers, Negar Ghochaghi

Theses and Dissertations

Electrospinning is a process by which polymer fibers can be produced using an electrostatically driven fluid jet. Electrospun fibers can be produced at the micro- or nano-scale and are, therefore, very promising for air filtration applications. However, because electrospun fibers are electrically charged, it is difficult to control the morphology of filtration media. Fiber size, alignment and uniformity are very important factors that affect filter performance. The focus of this project is to understand the relationship between filter morphology and performance and to develop new methods to create filtration media with optimum morphology.

This study is divided into three focus …


Prediction Of Spectral Phonon Mean Free Path And Thermal Conductivity With Applications To Thermoelectrics And Thermal Management: A Review, Tianli Feng, Xiulin Ruan Jan 2014

Prediction Of Spectral Phonon Mean Free Path And Thermal Conductivity With Applications To Thermoelectrics And Thermal Management: A Review, Tianli Feng, Xiulin Ruan

Birck and NCN Publications

We give a review of the theoretical approaches for predicting spectral phonon mean free path and thermal conductivity of solids. The methods can be summarized into two categories: anharmonic lattice dynamics calculation and molecular dynamics simulation. In the anharmonic lattice dynamics calculation, the anharmonic force constants are used first to calculate the phonon scattering rates, and then the Boltzmann transport equations are solved using either standard single mode relaxation time approximation or the Iterative Scheme method for the thermal conductivity. The MD method involves the time domain or frequency domain normal mode analysis. We present the theoretical frameworks of the …


Non-Faradaic Impedance Characterization Of An Evaporating Droplet For Microfluidic And Biosensing Applications, Piyush Dak, Aida Ebrahimi, Muhammad A. Alam Jan 2014

Non-Faradaic Impedance Characterization Of An Evaporating Droplet For Microfluidic And Biosensing Applications, Piyush Dak, Aida Ebrahimi, Muhammad A. Alam

Birck and NCN Publications

We have developed a general numerical/analytical theory of non-faradaic impedance of an evaporating droplet, and validated the model by experiments involving droplets of various analyte concentrations deposited on a surface defined by coplanar electrodes. The impedance of the droplet Z(n(0),t,f) is analyzed as a function of the concentration (n(0)) of the ions in the solution, the measurement frequency (f) and the evaporation time (t). We illustrate the versatility of the model by determining the sensitivity enhancement alpha(t) of the droplet-based impedimetric nano-biosensor under different regimes of operation. The model should have broad applications in the characterization/optimization of droplet-based systems, especially …


Altered Mechanobiology Of Schlemm’S Canal Endothelial Cells In Glaucoma, Darryl R. Overby, Enhua H. Zhou, Rocio Vargas-Pinto, Ryan M. Pedrigi, Rudolf Fuchshofer, Sietse T. Braakman, Ritika Gupta, Kristin M. Perkumas, Joesph M. Sherwood, Amir Vahabikashi, Quynh Dang, Jae Hun Kim, C. Ross Ethier, W. Daniel Stamer, Jeffrey J. Fredberg, Mark Johnson Jan 2014

Altered Mechanobiology Of Schlemm’S Canal Endothelial Cells In Glaucoma, Darryl R. Overby, Enhua H. Zhou, Rocio Vargas-Pinto, Ryan M. Pedrigi, Rudolf Fuchshofer, Sietse T. Braakman, Ritika Gupta, Kristin M. Perkumas, Joesph M. Sherwood, Amir Vahabikashi, Quynh Dang, Jae Hun Kim, C. Ross Ethier, W. Daniel Stamer, Jeffrey J. Fredberg, Mark Johnson

Department of Mechanical and Materials Engineering: Faculty Publications

Increased flow resistance is responsible for the elevated intraocular pressure characteristic of glaucoma, but the cause of this resistance increase is not known. We tested the hypothesis that altered biomechanical behavior of Schlemm’s canal (SC) cells contributes to this dysfunction. We used atomic force microscopy, optical magnetic twisting cytometry, and a unique cell perfusion apparatus to examine cultured endothelial cells isolated from the inner wall of SC of healthy and glaucomatous human eyes. Here we establish the existence of a reduced tendency for pore formation in the glaucomatous SC cell—likely accounting for increased outflow resistance—that positively correlates with elevated subcortical …


Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo Jan 2014

Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo

Mechanical & Aerospace Engineering Faculty Publications

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any …


An Unexpected Particle Oscillation For Electrophoresis In Viscoelastic Fluids Through A Microchannel Constriction, Xinyu Lu, Saurin Patel, Meng Zhang, Sang Woo Joo, Shizhi Qian, Amod Ogale, Xiangchun Xuan Jan 2014

An Unexpected Particle Oscillation For Electrophoresis In Viscoelastic Fluids Through A Microchannel Constriction, Xinyu Lu, Saurin Patel, Meng Zhang, Sang Woo Joo, Shizhi Qian, Amod Ogale, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

Electrophoresis plays an important role in many applications, which, however, has so far been extensively studied in Newtonian fluids only. This work presents the first experimental investigation of particle electrophoresis in viscoelastic polyethylene oxide (PEO) solutions through a microchannel constriction under pure DC electric fields. An oscillatory particle motion is observed in the constriction region, which is distinctly different from the particle behavior in a polymer-free Newtonian fluid. This stream-wise particle oscillation continues until a sufficient number of particles form a chain to pass through the constriction completely. It is speculated that such an unexpected particle oscillating phenomenon is a …


Enhancing The Insulation Of Wide-Range Spectrum In The Pva/N Thin Film By Doping Zno Nanowires, Yu-Chen Lin, Ching-Hsiang Vhen, Liang-Yih Chen, Shih-Chieh Hsu, Shizhi Qian Jan 2014

Enhancing The Insulation Of Wide-Range Spectrum In The Pva/N Thin Film By Doping Zno Nanowires, Yu-Chen Lin, Ching-Hsiang Vhen, Liang-Yih Chen, Shih-Chieh Hsu, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In this study, polyvinyl alcohol/nitrogen (PVA/N) hybrid thin films doped with sharp-sword ZnO nanowires with insulating effect and wide-range spectrum are demonstrated for the first time. PVA/N doped ZnO nanocomposites were developed by blending PVA and N-doped ZnO nanowires in water at room temperature. Measurements from the field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman, and photoluminescence emission (PL) spectra of the products show that nitrogen is successfully doped into the ZnO wurtzite crystal lattice. In addition, the refractive index of PVA/N doped ZnO hybrid thin films can be controlled by varying the doped ZnO nanowires under different …


Fabrication Of Yttrium Ferrite Nanoparticles By Solution Combustion Synthesis, A. A. Saukhimov, Mkhitar A. Hobosyan, Gamage C. Dannangoda, N. N. Zhumabekova, S. E. Kumekov Jan 2014

Fabrication Of Yttrium Ferrite Nanoparticles By Solution Combustion Synthesis, A. A. Saukhimov, Mkhitar A. Hobosyan, Gamage C. Dannangoda, N. N. Zhumabekova, S. E. Kumekov

Physics and Astronomy Faculty Publications and Presentations

The ternary oxide system Y-Fe-O presents fascinating magnetic properties that are sensitive to the crystalline size of particles. There is a major challenge to fabricate these materials in nano-crystalline forms due to particle conglomeration during nucleation and synthesis. In this paper we report the fabrication of nano sized crystalline yttrium ferrite by solution combustion synthesis (SCS) where yttrium and iron nitrates were used as metal precursors with glycine as a fuel. The magnetic properties of the product can be selectively controlled by adjusting the ratio of glycine to metal nitrates. Yttrium ferrite nano-powder was obtained by using three concentration of …


Measurement Of Hydrodynamic Force Generation By Swimming Dolphins Using Bubble Dpiv, Frank E. Fish, Paul Legac, Terrie M. Williams, Timothy Wei Jan 2014

Measurement Of Hydrodynamic Force Generation By Swimming Dolphins Using Bubble Dpiv, Frank E. Fish, Paul Legac, Terrie M. Williams, Timothy Wei

Department of Mechanical and Materials Engineering: Faculty Publications

Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked …


Polymer Aggregation Correlated Transition From Schottky-Junction To Bulk Heterojunction Organic Solar Cells, Bin Yang, Zhengguo Xiao, Jinsong Huang Jan 2014

Polymer Aggregation Correlated Transition From Schottky-Junction To Bulk Heterojunction Organic Solar Cells, Bin Yang, Zhengguo Xiao, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

The fullerene-based organic Schottky-junction solar cells have recently attracted intensive research interest because of their unique electrical performance, such as significant photocurrent generation from excitons created in fullerenes and large open-circuit voltage (VOC) output induced by high Schottky-barrier height between the anode and the fullerene acceptor. This manuscript reports another remarkably appealing advantage that the fullerene-based Schottky-junction solar cells are more stable than the bulk heterojunction counterparts. The better stability is likely due to mitigative polymer photo-oxidation and/or little morphological change of active film in the aged Schottky-junction devices. The transition from Schottky-junction to bulk heterojunction appears at …


Qualifying Composition Dependent P And N Self-Doping In Ch3Nh3Pbi3, Qi Wang, Yuchuan Shao, Haipeng Xie, Lu Lyu, Xiaoliang Liu, Yongli Gao, Jinsong Huang Jan 2014

Qualifying Composition Dependent P And N Self-Doping In Ch3Nh3Pbi3, Qi Wang, Yuchuan Shao, Haipeng Xie, Lu Lyu, Xiaoliang Liu, Yongli Gao, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

We report the observation of self-doping in perovskite. CH3NH3PbI3 was found to be either n- or p-doped by changing the ratio of methylammonium halide (MAI) and lead iodine (PbI2) which are the two precursors for perovskite formation. MAI-rich and PbI2-rich perovskite films are p and n self-doped, respectively. Thermal annealing can convert the p-type perovskite to n-type by removing MAI. The carrier concentration varied as much as six orders of magnitude. A clear correlation between doping level and device performance was also observed.


Phase Transitions In Mechanically Milled Mn-Al-C Permanent Magnets, Michael J. Lucis, Timothy E. Prost, Xiujuan Jiang, Meiyu Wang, Jeffrey E. Shield Jan 2014

Phase Transitions In Mechanically Milled Mn-Al-C Permanent Magnets, Michael J. Lucis, Timothy E. Prost, Xiujuan Jiang, Meiyu Wang, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Faculty Publications

Mn-Al powders were prepared by rapid solidification followed by high-energy mechanical milling. The rapid solidification resulted in single-phase ε. The milling was performed in both the ε phase and the τ phase, with the τ-phase formation accomplished through a heat treatment at 500 °C for 10 min. For the ε-milled samples, the conversion of the ε to the τ phase was accomplished after milling via the same heat treatment. Mechanical milling induced a significant increase in coercivity in both cases, reaching 4.5 kOe and 4.1 kOe, respectively, followed by a decrease upon further milling. The increase in coercivity was the …


Biomechanical Strain As A Trigger For Pore Formation In Schlemm’S Canal Endothelial Cells, Sietse T. Braakman, Ryan M. Pedrigi, A. Thomas Read, James A. E. Smith, W. Daniel Stamer, C. Ross Ethier, Darryl R. Overby Jan 2014

Biomechanical Strain As A Trigger For Pore Formation In Schlemm’S Canal Endothelial Cells, Sietse T. Braakman, Ryan M. Pedrigi, A. Thomas Read, James A. E. Smith, W. Daniel Stamer, C. Ross Ethier, Darryl R. Overby

Department of Mechanical and Materials Engineering: Faculty Publications

The bulk of aqueous humor passing through the conventional outflow pathway must cross the inner wall endothelium of Schlemm’s canal (SC), likely through micron-sized transendothelial pores. SC pore density is reduced in glaucoma, possibly contributing to obstructed aqueous humor outflow and elevated intraocular pressure (IOP). Little is known about the mechanisms of pore formation; however, pores are often observed near dome-like cellular outpouchings known as giant vacuoles (GVs) where significant biomechanical strain acts on SC cells. We hypothesize that biomechanical strain triggers pore formation in SC cells. To test this hypothesis, primary human SC cells were isolated from three non-glaucomatous …


Quality And Safety Of Minimally Invasive Surgery: Past, Present, And Future, Bernadette Mccrory, Chad A. Lagrange, M. S. Hallbeck Jan 2014

Quality And Safety Of Minimally Invasive Surgery: Past, Present, And Future, Bernadette Mccrory, Chad A. Lagrange, M. S. Hallbeck

Department of Mechanical and Materials Engineering: Faculty Publications

Adverse events because of medical errors are a leading cause of death in the United States (US) exceeding the mortality rates of motor vehicle accidents, breast cancer, and AIDS. Improvements can and should be made to reduce the rates of preventable surgical errors because they account for nearly half of all adverse events within hospitals. Although minimally invasive surgery (MIS) has proven patient benefits such as reduced postoperative pain and hospital stay, its operative environment imposes substantial physical and cognitive strain on the surgeon increasing the risk of error. To mitigate errors and protect patients, a multidisciplinary approach is needed …


Dynamic Fracture Analysis Of Polycarbonate By The Optical Method Of Caustics, Guiyun Gao, Zheng Li, Mehrdad Negahban Jan 2014

Dynamic Fracture Analysis Of Polycarbonate By The Optical Method Of Caustics, Guiyun Gao, Zheng Li, Mehrdad Negahban

Department of Mechanical and Materials Engineering: Faculty Publications

Glassy polycarbonate (PC) is a widely used engineering material in industries, since it has high strength and toughness as well as good transparency. However, these advantages of PC can be suppressed by physical aging, especially its dynamic fracture toughness. In addition, the material properties of PC can be changed dramatically after large plastic compressive deformation, and it can show obvious orthotropic behavior. Here, the combined effect of aging and plastic compressive deformation on dynamic facture of PC was investigated by the optical method of caustics. The dynamic reflective method of caustics for orthotropic materials was developed here to study the …


Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome Jan 2014

Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome

Theses and Dissertations--Chemistry

Due to their relative chemical stability and ubiquity in the environment, chlorinated organic contaminants such as polychlorinated biphenyls (PCBs) pose significant health risks and enduring remediation challenges. Engineered nanoparticles (NPs) provide a novel platform for sensing/remediation of these toxicants, in addition to the growing use of NPs in many industrial and biomedical applications, but there remains concern for their potential long-term health effects. Research highlighted herein also represents a transdisciplinary approach to address human health challenges associated with exposure to PCBs and NPs. The objectives of this dissertation research are two-fold, 1) to develop effective methods for capture/sensing and remediation …


Development Of A Nitrogen Incorporated Ultrananocrystalline Diamond Film Based Field Emitter Array For A Flat Panel X-Ray Source, Chrystian Mauricio Posada Jan 2014

Development Of A Nitrogen Incorporated Ultrananocrystalline Diamond Film Based Field Emitter Array For A Flat Panel X-Ray Source, Chrystian Mauricio Posada

Doctoral Dissertations

"As an alternative to conventional X-ray sources, a flat panel transmission X-ray source is being developed. A field emitter array (FEA) prototype to be incorporated as cold cathode in this flat panel X-ray source was fabricated for this work. Using the Particle-in-Cell code OOPIC Pro, an initial FEA was designed through simulations. Based on the simulation results, a FEA prototype was fabricated using conventional microfabrication techniques. Planar nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) films were used as field emitters. This N-UNCD based FEA prototype was composed of 9 pixels distributed in a 3x3 array, with a pixel size of 225x225 µm, and …


Fabrication Of Magnetic Two-Dimensional And Three-Dimensional Microstructures For Microfluidics And Microrobotics Applications, Hui Li Jan 2014

Fabrication Of Magnetic Two-Dimensional And Three-Dimensional Microstructures For Microfluidics And Microrobotics Applications, Hui Li

Theses and Dissertations--Mechanical Engineering

Micro-electro-mechanical systems (MEMS) technology has had an increasing impact on industry and our society. A wide range of MEMS devices are used in every aspects of our life, from microaccelerators and microgyroscopes to microscale drug-delivery systems. The increasing complexity of microsystems demands diverse microfabrication methods and actuation strategies to realize. Currently, it is challenging for existing microfabrication methods—particularly 3D microfabrication methods—to integrate multiple materials into the same component. This is a particular challenge for some applications, such as microrobotics and microfluidics, where integration of magnetically-responsive materials would be beneficial, because it enables contact-free actuation. In addition, most existing microfabrication methods …


Precursors And Processes For The Growth Of Metallic First Row Transition Metal Films By Atomic Layer Deposition, Lakmal Charidu Kalutarage Jan 2014

Precursors And Processes For The Growth Of Metallic First Row Transition Metal Films By Atomic Layer Deposition, Lakmal Charidu Kalutarage

Wayne State University Dissertations

As a result of the continuous miniaturization of microelectronics devices, atomic layer deposition (ALD) has gained much attention in the recent years. ALD allows the deposition of ultra-thin conformal films with accurate thickness control due to the self-limiting growth mechanism. The microelectronics industry requires the growth of metallic first row transition metal films by ALD. Due to the positive electrochemical potentials, the ALD growth of noble metal thin films has been well developed in the past. By contrast, the ALD growth of first row transition metal films remains poorly documented. The reasons for this scarcity include the lack of suitable …


The Study Of The Dielectric Properties Of The Endohedral Fullerenes, Shusil Bhusal Jan 2014

The Study Of The Dielectric Properties Of The Endohedral Fullerenes, Shusil Bhusal

Open Access Theses & Dissertations

Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N@C68(6140), Sc3N@C68(6146), Sc3N@C70(7854), Sc3N@C70(7960), Sc3N@C76(17490), Sc3N@C78(22010), Sc3N@C80(31923), Sc3N@C80(31924), Sc3N@C82(39663), Sc3N@C90(43), Sc3N@C90(44), Sc3N@C92(85), Sc3N@C94(121), Sc3N@C96(186), Sc3N@C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability …


Fluid Dynamic Modeling Of Nano-Thermite Reactions, Karen S. Martirosyan, Maxim Zyskin, Charles M. Jenkins, Yasuyuki Horie Jan 2014

Fluid Dynamic Modeling Of Nano-Thermite Reactions, Karen S. Martirosyan, Maxim Zyskin, Charles M. Jenkins, Yasuyuki Horie

Physics and Astronomy Faculty Publications and Presentations

This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage …